Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
Cosmic Giants Shed New Light on Dark Matter
by Staff Writers
Tokyo, Japan (SPX) Jun 19, 2013


Dark matter maps for a sample of fifty individual galaxy clusters (left), an average galaxy cluster (center), and those based on dark matter theory (right). The density of dark matter increases in the order of blue, green, yellow, and red colors. The white horizontal line represents a scale of one million light-years. The map based on predictions from CDM theory (right, middle) is a close match to the average galaxy cluster observed with the Subaru Telescope. (Credit: NAOJ/ASIAA/School of Physics and Astronomy, University of Birmingham/Kavli IPMU/Astronomical Institute, Tohoku University). For a larger version of this image please go here.

An international team of astronomers (Note) from Taiwan, England, and Japan has used the Subaru Telescope to measure the distribution of dark matter in fifty galaxy clusters and found that its density gradually decreases from the center of these cosmic giants to their diffuse outskirts. This new evidence about the mysterious dark matter that pervades our Universe conforms to the predictions of cold dark matter theory, known as "CDM".

Few scientists seriously doubt the existence of dark matter, which researchers discovered almost eighty years ago. Nevertheless, astronomers cannot directly see dark matter in the night sky, and particle physicists have not yet identified a dark matter particle in their experiments. "What is dark matter?" is a big unanswered question facing astronomers and particle physicists, especially because invisible dark matter probably makes up 85% of the mass of the Universe.

The current team, led by Dr. Nobuhiro Okabe (Academia Sinica, Taiwan) and Dr. Graham Smith (University of Birmingham, England), used the Subaru Prime Focus Camera (Suprime-Cam) to investigate the nature of dark matter by measuring its density in fifty galaxy clusters, the most massive objects in the Universe. "A galaxy cluster is like a huge city viewed from above during the night", said Smith.

"Each bright city light is a galaxy, and the dark areas between the lights that appear to be empty during the night are actually full of dark matter. You can think of the dark matter in a galaxy cluster as being the infrastructure within which the galaxies live," he explained. The team wanted to use a large sample of galaxy clusters to find out how the density of dark matter changes from the center of a typical galaxy cluster to its outskirts.

The density of dark matter depends on the properties of the individual dark matter particles, just like the density of everyday materials depends on their components. CDM, the leading theory about dark matter to date, asserts that dark matter particles only interact with each other and with other matter via the force of gravity; they do not emit or absorb electromagnetic radiation and are difficult if not impossible to see. Therefore, the team chose to observe dark matter by using gravitational lensing, which detects its presence through its gravitational interactions with ordinary matter and radiation.

According to Einstein's theory of relativity, light from a very distant bright source bends around a massive object, e.g., a cluster of galaxies, between the source object and the observer. It follows from this principle that the dark matter in cosmic giants like galaxy clusters alters the apparent shape and position of distant galaxies. Lead author Okabe enthused, "The Subaru Telescope is a fantastic instrument for gravitational lensing measurements. It allows us to measure very precisely how the dark matter in galaxy clusters distorts light from distant galaxies and gauge tiny changes in the appearance of a huge number of faint galaxies." (Figure 1)

CDM theory describes how dark matter in galaxy clusters changes from its dense center to its lower density edges in two ways. One is a simple measure of the galaxy cluster's mass, the amount of matter that it contains. The other is a concentration parameter, which is a single measurement of the cluster's average density, how compact it is. CDM theory predicts that central regions of galaxy clusters have a low concentration parameter while individual galaxies have a high concentration parameter.

The team combined measurements from observations of fifty of the most massive known galaxy clusters to calculate their concentration parameter. The average mass map (Figure 2) is remarkably symmetrical with a pronounced mass peak. The mass density distribution for individual clusters shows a wide range of densities.

They found that the density of dark matter increases from the edges to the center of the cluster, and that the concentration parameter of galaxy clusters in the near Universe aligns with CDM theory. Past research based on a small number of clusters found that they had large concentration parameters and did not conform to CDM theory. In contrast, measurement of the average concentration parameter from a large number of clusters yielded a different result, which supports CDM theory.

Okabe commented on the team's findings, based on a larger sample of galaxy clusters: "This is a very satisfying result, which is based on a very careful analysis of the best available data". What does the future hold for the team's continued research on dark matter? Smith noted, "We don't stop here. For example, we can improve our work by measuring dark matter density on even smaller scales, right in the center of these galaxy clusters. Additional measurements on smaller scales will help us to learn more about dark matter in the future."

Team member Professor Masahiro Takada (Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo, Japan) is also excited about the future: "Combining lensing observations of many galaxy clusters into a single measurement like this is a very powerful technique. Japanese astronomers are preparing to use Subaru Telescope's new Hyper Suprime-Cam (HSC) to conduct one of the biggest surveys of galaxies in human history. Our new results are a beautiful confirmation of our plan to use HSC for gravitational lensing studies."

The members of this research team are also team members of the "Local Cluster Substructure Survey (LoCuSS)", an international consortium of astronomers studying galaxy clusters, as part of the global research effort to answer big, open questions about the cosmos, including the nature of dark matter. More information about the LoCuSS consortium is available from Dr. Graham Smith, and at http://www.sr.bham.ac.uk/locuss.

The research paper on which this article is based was published online in the May 17, 2013 edition of the Astrophysical Journal Letters: N. Okabe et al., "LoCuSS: The Mass Density Profile of Massive Galaxy Clusters at z=0.2", Volume 769, Number 2, Article ID. 35 (2013).

.


Related Links
Subaru Telescope
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Euclid to probe dark Universe with Astrium science module
Paris (ESA) Jun 14, 2013
The module carrying the telescope and scientific instruments of ESA's Euclid 'dark Universe' mission is now being developed by Astrium in Toulouse, France. Euclid will be launched in 2020 to explore dark energy and dark matter in order to understand the evolution of the Universe since the Big Bang and, in particular, its present accelerating expansion. Dark matter is invisible to our ... read more


STELLAR CHEMISTRY
Scientists use gravity, topographic data to find unmapped moon craters

Australian team maps Moon's hidden craters

LADEE Arrives at Wallops for Moon Mission

NASA's GRAIL Mission Solves Mystery of Moon's Surface Gravity

STELLAR CHEMISTRY
Study: Mars may have had ancient oxygen-rich atmosphere

Opportunity Recovers From Another Flash-Related Reset

ExoMars 2016 Set To Complete Construction

Mars Water-Ice Clouds Are Key to Odd Thermal Rhythm

STELLAR CHEMISTRY
New Zealand emerges as guinea pig for global tech firms

NASA announces eight new astronauts, half are women

Lebanese start-ups seek tech boom

China confident in space exploration

STELLAR CHEMISTRY
Half-Time for Shenzhou 10

China's Naughty Space Models

China's space dream crystallized with Shenzhou-10 launch

China astronauts enter space module

STELLAR CHEMISTRY
Strange Flames on the ISS

Europe's space truck docks with ISS

Russian cargo supply craft separates from International Space Station

Russian Space Freighter to Depart From Orbital Station

STELLAR CHEMISTRY
Peru launches first homemade rocket

The Centaur Upper Stage

INSAT-3D is delivered to French Guiana for Arianespace's next Ariane 5 launch

A dream launch for Shenzhou X

STELLAR CHEMISTRY
NASA's Hubble Uncovers Evidence of Farthest Planet Forming From its Star

Exoplanet formation surprise

Sunny Super-Earth?

Kepler Stars and Planets are Bigger than Previously Thought

STELLAR CHEMISTRY
Raytheon extends ballistic missile defense capability through radar modernization effort

An innovative material for the green Earth

Scientists say pearls 'ratchet' themselves to form perfect spheres

Laser survey reveals detail of 'lost' city hidden in Cambodian jungle




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement