Subscribe free to our newsletters via your
. 24/7 Space News .




ROBO SPACE
Controlling the uncontrollable
by Staff Writers
Boston MA (SPX) Aug 18, 2015


These soft actuators harnessed the power of snap-through instabilities to trigger large outputs with small inputs of fluid. Image courtesy Johannes Overvelde/The Bertoldi Lab. For a larger version of this image please go here.

Instability in engineering is generally not a good thing. If you're building a skyscraper, minor instabilities could bring the whole structure crashing down in a fraction of a second. But what if a quick change in shape is exactly what you want?

Soft machines and robots are becoming more and more functional, capable of moving, jumping, gripping an object, and even changing color. The elements responsible for their actuation motion are often soft, inflatable segments called fluidic actuators. These actuators require large amounts of air or water to change shape, making the machines slow, bulky and difficult to untether.

A team of researchers at the Harvard John A. Paulson School of Engineering and Applied Science (SEAS) has engineered a new, soft actuator that harnesses the power of instability to trigger instantaneous movement.

The research was led by Katia Bertoldi, the John L. Loeb Associate Professor of the Natural Sciences, member of the Kavli Institute for Bionano Science and Technology, and faculty associate of the Materials Research Science and Engineering Center. The work is described in a paper in the Proceedings of the National Academy of Sciences.

The actuator is inspired by a famous physics experiment in which two balloons are inflated to different sizes and connected via a tube and valve. When the valve is opened, air flows between the balloons. Instead of equalizing in size, as one might expect, the larger balloon inflates more while the smaller balloon deflates.

This unexpected behavior comes from the balloons' non-linear relationship between pressure and volume, meaning the an increase in volume doesn't necessarily increase the pressure.

"When inflating a balloon, the first few blows are the hardest but after reaching a critical pressure it becomes easier," said Johannes Overvelde, PhD student at SEAS and first author on the paper. "Similar to the balloons, in our research we connect fluidic segments in such a way that an interplay between their non-linear response results in unexpected behavior. Certain combinations of these interconnected segments can result in fast moving instabilities with negligible change in volume."

These fast-moving instabilities, called snap-through instabilities, trigger large changes in internal pressure, extension, shape, and exerted force, with only small changes in volume. If harnessed, these instabilities would allow soft robots to move quickly without needing to carry or be tethered to a fluid supply.

But first Bertoldi's team had to find a way to control something that, by definition, is uncontrollable.

The team started by building and inflating 36 individual segments with water, and measuring how they responded. Then, using a complex computer algorithm, they determined the responses of all possible combinations of the segments.

A total of 630 possible actuators could be assembled from two segments, each with a different combined response. Some of the combinations showed instabilities, others did not. The team selected the preferred response for a specific application. One combination, for example, would lead to a sudden increase in actuator length, moving it like a worm. Another combination would quickly transfer all volume from one segment to another.

These quick movements could be triggered with small amounts of volume. For example, 1 ml. of water triggered a snap-through instability that resulted in an internal volume flow of 20 ml.

"The beauty of these individual segments is that they are easy and cheap to fabricate from off-the-shelve materials. Yet, when you connect segments you get soft actuators with very complex behavior," said Overvelde. "By connecting multiple segments, you can embed a simple program in the actuator that is able to perform a complex sequence of local inflation and deflation."

The next step is to test these instabilities in soft robotics.

"Engineers have long avoided instability because it so often represents failure," said Bertoldi. "It's remarkable that instability itself has provided a way to improve and push the field of soft actuators forward."

This research was co-authored by Tamara Kloek and Jonas D'haen. It was supported by the Materials Research Science and Engineering Center and the National Science Foundation.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Harvard University
All about the robots on Earth and beyond!






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





ROBO SPACE
MIT engineers build, test bartending robots that work together
Boston (UPI) Aug 12, 2015
Engineers at MIT have designed a team of robots capable of working together to pour and deliver beers to thirsty humans. Researchers at MIT's Computer Science and Artificial Intelligence Laboratory (CSAIL) have essentially mechanized an entire bar waitstaff. One robot cracks open beers, while two others take orders from patrons and deliver the suds. A special PR2 robot served as ... read more


ROBO SPACE
From a million miles away, NASA camera shows moon crossing face of Earth

Russia to conduct simulated flight program to Moon, Mars over 4 years

NASA Could Return Humans to the Moon by 2021

Smithsonian embraces crowdfunding to preserve lunar spacesuit

ROBO SPACE
One Decade after Launch, Mars Orbiter Still Going Strong

Mars Rovers and the Last Moonwalker to Invade Poland in September

Salt flat indicates some of the last vestiges of surface water on Mars

New Online Exploring Tools Bring NASA's Journey to Mars to New Generation

ROBO SPACE
First Time Ever: ISS Crew Eats Food Grown in Outer Space

US, Russia, China to Explore Benefits of Outer Space for ASEAN

First bite of space-grown lettuce is 'awesome'

Spaceflight may increase susceptibility to inflammatory bowel disease

ROBO SPACE
China's space exploration potential has US chasing its own tail

China to deploy space-air-ground sensors for environment protection

Chinese earth station is for exclusively scientific and civilian purposes

Cooperation in satellite technology put Belgium, China to forefront

ROBO SPACE
ISS to Open Research Facility for Materials Science Research by 2017

NASA Completes Selection of Crew Members for 2017 ISS Missions

Russian cosmonauts wrap up spacewalk

NASA renews $490M contract with Russian Space Agency

ROBO SPACE
ILS concludes Proton launch failure investigation

Intelsat 34 fueled for heavy-lift mission with Ariane 5

India to launch 9 US satellites in 2015, 2016

Payload checkout is advancing for Arianespace's September Soyuz flight

ROBO SPACE
Astronomers discover new planet orbiting two stars

Scientists solve planetary ring riddle

Overselling NASA

Exoplanets 20/20: Looking Back to the Future

ROBO SPACE
Australia court sides with Internet firms in piracy row

How CubeSats are Revolutionizing Radio Science

Big data analytical advances to exploration of universe

New device converts DC electric field to terahertz radiation




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.