Subscribe free to our newsletters via your
. 24/7 Space News .




ENERGY TECH
Computational clues into the structure of a promising energy conversion catalyst
by Staff Writers
Princeton NJ (SPX) Dec 23, 2014


This image is a representation of the mosaic structure of b-NiOOH and its possible structures. Image courtesy Selloni lab.

Hydrogen fuel is a promising source of clean energy that can be produced by splitting water into hydrogen and oxygen gas. The reaction is difficult but achievable with the help of a catalyst, a material that can speed up the process.

However, current catalysts lack the efficiency required for water splitting to be commercially competitive. Recently scientists have identified one such catalyst, iron-doped nickel oxide, as a highly active compound that can speed up this reaction, but the origin of its activity is not well understood.

Now researchers at Princeton University have reported new insights into the structure of an active component of the nickel oxide catalyst, known as b-NiOOH, using theoretical calculations. Led by Annabella Selloni, professor of chemistry at Princeton, the findings were published in The Journal of Physical Chemistry Letters.

"Understanding the structure is the basis for any further study of the material's properties. If you don't know the material's structure you can't know what it's doing," Selloni said. Nickel oxide's exact structure has been difficult to determine experimentally because it is constantly changing during the reaction.

The research team took a theoretical approach and employed a "genetic algorithm" to search for the structure. Genetic algorithms operate under a set of parameters that draw inspiration from evolution by creating generation after generation of structures to arrive at the most "fit" or most likely candidates.

Taking the results of the genetic algorithm search in combination with computational techniques known as hybrid density functional theory calculations--which estimate a molecule's electronic structure--Li and Selloni were able to identify structures of nickel oxide that supported existing observations.

One such observation is the material's mosaic texture, composed of tiny grain-like microstructures. The researchers propose that these microstructures are stable tunnel structures that relieve stress between layers. Another observed feature is the doubling of the distance between layers made of the same material, referred to as its c axis periodicity, which represents the alternating layers of Ni(OH)2 and NiO2 formed during the reaction.

Armed with a better understanding of the material's structure, the scientists hope to further map out its activity in the reaction. "I'm interested in the microscopic mechanisms, what are the electrons and atoms doing?" Selloni said.

Li, Y.-F.; Selloni, A. "Mosaic Texture and Double c-Axis Periodicity of b-NiOOH: Insights from First-Principles and Genetic Algorithm Calculations." J. Phys. Chem. Lett. 2014, 5, 3981.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Princeton University
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
Chinese power companies pursue smart grids
Tianjin, China (SPX) Oct 21, 2014
After conducting an investigation about the current state of the operation of medium voltage distribution grids and the integration of distributed generation (DG) of renewable resources across China, scientists at the Key Laboratory of Smart Grid, under the auspices of the Ministry of Education, at Tianjin University in the east coast city of Tianjin, set out an array of R and D opportunities to ... read more


ENERGY TECH
'Shooting the Moon' with Satellite Laser Ranging

Moon Express testing compact lunar lander at Kennedy

UK Plans to Drill Into Moon, Explore Feasibility of Manned Base

Carnegie Mellon Unveils Lunar Rover "Andy"

ENERGY TECH
Russian scientists 'map' water vapor in Martian atmosphere

Flying over Becquerel

New idea for transporting spacecraft could ease trip to Mars

NASA, Planetary Scientists Find Meteoritic Evidence of Mars Water Reservoir

ENERGY TECH
FFD signs Space Act Agreement with NASA for Space Suit Development

NASA Commercial Crew Partners Complete 23 Milestones in 2014

NASA Selects Commercial Space Partners for Collaborative Partnerships

Does the peer review process stifle scientific innovation?

ENERGY TECH
China's Long March puts satellite in orbit on 200th launch

Countdown to China's new space programs begins

China develops new rocket for manned moon mission: media

Service module of China's returned lunar orbiter reaches L2 point

ENERGY TECH
Bright lights: big cities at night

NASA, SpaceX Update Launch of Fifth SpaceX Resupply Mission to ISS

Fifth SpaceX Mission Lets the CATS Out on the International Space Station

Politics no problem, say US and Russian spacefarers

ENERGY TECH
Soyuz Installed at Baikonur, Expected to Launch Wednesday

Russian Space Agency Pushes Back Earth Imaging Satellite Launch to Friday

Thirty-five years of Ariane: how Ariane was born

Strela Rocket With Kondor-E Satellite Blasts Off From Baikonur

ENERGY TECH
Kepler Proves It Can Still Find Planets

NASA's Kepler Reborn, Makes First Exoplanet Find of New Mission

Super-Earth spotted by ground-based telescope, a first

Astronomers spot Pluto-size objects swarming about young sun

ENERGY TECH
Lead islands in a sea of graphene magnetize the material of the future

Penn Researchers Show Commonalities in How Different Glassy Materials Fail

Theory details how 'hot' monomers affect thin-film formation

Back to future with Roman architectural concrete




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.