Subscribe free to our newsletters via your
. 24/7 Space News .




IRON AND ICE
Comet's firework display ahead of perihelion
by Staff Writers
Paris (ESA) Aug 12, 2015


A short-lived outburst from Comet 67P/Churyumov-Gerasimenko was captured by Rosetta's OSIRIS narrow-angle camera on 29 July 2015. The image at left was taken at 13:06 GMT and does not show any visible signs of the jet. It is very strong in the middle image captured at 13:24 GMT. Residual traces of activity are only very faintly visible in the final image taken at 13:42 GMT. The images were taken from a distance of 186 km from the centre of the comet. The jet is estimated to have a minimum speed of 10 m/s and originates from a location on the comet's neck, in the rugged Anuket region. Image courtesy ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA. For a larger version of this image please go here.

In the approach to perihelion over the past few weeks, Rosetta has been witnessing growing activity from Comet 67P/Churyumov-Gerasimenko, with one dramatic outburst event proving so powerful that it even pushed away the incoming solar wind.

The comet reaches perihelion on Thursday, the moment in its 6.5-year orbit when it is closest to the Sun. In recent months, the increasing solar energy has been warming the comet's frozen ices, turning them to gas, which pours out into space, dragging dust along with it.

The period around perihelion is scientifically very important, as the intensity of the sunlight increases and parts of the comet previously cast in years of darkness are flooded with sunlight.

Although the comet's general activity is expected to peak in the weeks following perihelion, much as the hottest days of summer usually come after the longest days, sudden and unpredictable outbursts can occur at any time - as already seen earlier in the mission.

On 29 July, Rosetta observed the most dramatic outburst yet, registered by several of its instruments from their vantage point 186 km from the comet. They imaged the outburst erupting from the nucleus, witnessed a change in the structure and composition of the gaseous coma environment surrounding Rosetta, and detected increased levels of dust impacts.

Perhaps most surprisingly, Rosetta found that the outburst had pushed away the solar wind magnetic field from around the nucleus.

A sequence of images taken by Rosetta's scientific camera OSIRIS show the sudden onset of a well-defined jet-like feature emerging from the side of the comet's neck, in the Anuket region. It was first seen in an image taken at 13:24 GMT, but not in an image taken 18 minutes earlier, and has faded significantly in an image captured 18 minutes later. The camera team estimates the material in the jet to be travelling at 10 m/s at least, and perhaps much faster.

"This is the brightest jet we've seen so far," comments Carsten Guttler, OSIRIS team member at the Max Planck Institute for Solar System Research in Gottingen, Germany.

"Usually, the jets are quite faint compared to the nucleus and we need to stretch the contrast of the images to make them visible - but this one is brighter than the nucleus."

Soon afterwards, the comet pressure sensor of ROSINA detected clear indications of changes in the structure of the coma, while its mass spectrometer recorded changes in the composition of outpouring gases.

For example, compared to measurements made two days earlier, the amount of carbon dioxide increased by a factor of two, methane by four, and hydrogen sulphide by seven, while the amount of water stayed almost constant.

"This first 'quick look' at our measurements after the outburst is fascinating," says Kathrin Altwegg, ROSINA principal investigator at the University of Bern. "We also see hints of heavy organic material after the outburst that might be related to the ejected dust.

"But while it is tempting to think that we are detecting material that may have been freed from beneath the comet's surface, it is too early to say for certain that this is the case."

Meanwhile, about 14 hours after the outburst, GIADA was detecting dust hits at rates of 30 per day, compared with just 1-3 per day earlier in July. A peak of 70 hits was recorded in one 4-hour period on 1 August, indicating that the outburst continued to have a significant effect on the dust environment for the following few days.

"It was not only the abundance of the particles, but also their speeds measured by GIADA that told us something 'different' was happening: the average particle speed increased from 8 m/s to about 20 m/s, with peaks at 30 m/s - it was quite a dust party!" says Alessandra Rotundi, principal investigator at the 'Parthenope' University of Naples, Italy.

Perhaps the most striking result is that the outburst was so intense that it actually managed to push the solar wind away from the nucleus for a few minutes - a unique observation made by the Rosetta Plasma Consortium's magnetometer.

The solar wind is the constant stream of electrically charged particles that flows out from the Sun, carrying its magnetic field out into the Solar System. Earlier measurements made by Rosetta and Philae had already shown that the comet is not magnetised, so the only source for the magnetic field measured around it is the solar wind.

But it doesn't flow past unimpeded. Because the comet is spewing out gas, the incoming solar wind is slowed to a standstill where it encounters that gas and a pressure balance is reached.

"The solar wind magnetic field starts to pile up, like a traffic jam, and eventually stops moving towards the comet nucleus, creating a magnetic field-free region on the Sun-facing side of the comet called a 'diamagnetic cavity'," explains Charlotte Gotz, magnetometer team member at the Institute for Geophysics and extraterrestrial Physics in Braunschweig, Germany.

Diamagnetic cavities provide fundamental information on how a comet interacts with the solar wind, but the only previous detection of one associated with a comet was made at about 4000 km from Comet Halley as ESA's Giotto flew past in 1986.

Rosetta's comet is much less active than Halley, so scientists expected to find a much smaller cavity around it, up to a few tens of kilometres at most, and prior to 29 July, had not observed any sign of one.

But, following the outburst on that day, the magnetometer detected a diamagnetic cavity extending out at least 186 km from the nucleus. This was likely created by the outburst of gas, which increased the neutral gas flux in the comet's coma, forcing the solar wind to 'stop' further away from the comet and thus pushing the cavity boundary outwards beyond where Rosetta was flying at the time.

"Finding a magnetic field-free region anyway in the Solar System is really hard, but here we've had it served to us on a silver platter - this is a really exciting result for us," adds Charlotte.

"We've been moving Rosetta out to distances of up to 300 km in recent weeks to avoid problems with navigation caused by dust, and we had considered that the diamagnetic cavity was out of our grasp for the time being. But it seems that the comet has helped us by bringing the cavity to Rosetta," says Matt Taylor, Rosetta Project Scientist.

"This is a fantastic multi-instrument event which will take time to analyse, but highlights the exciting times we're experiencing at the comet in this 'hot' perihelion phase."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
ESA Rosetta
Asteroid and Comet Mission News, Science and Technology






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





IRON AND ICE
Comet 67P, robot lab Philae's alien host, nears Sun
Paris (AFP) Aug 10, 2015
A comet streaking through space with a European robot lab riding piggyback will skirt the Sun this week, setting another landmark in an extraordinary quest to unravel the origins of life on Earth. Scientists hope the heat of perihelion - when the comet comes closest to the Sun in its orbit - will cause the enigmatic traveller to shed more of its icy crust. If so, it could spew out pris ... read more


IRON AND ICE
From a million miles away, NASA camera shows moon crossing face of Earth

Russia to conduct simulated flight program to Moon, Mars over 4 years

NASA Could Return Humans to the Moon by 2021

Smithsonian embraces crowdfunding to preserve lunar spacesuit

IRON AND ICE
New Online Exploring Tools Bring NASA's Journey to Mars to New Generation

One Decade after Launch, Mars Orbiter Still Going Strong

Salt flat indicates some of the last vestiges of surface water on Mars

Mars Rovers and the Last Moonwalker to Invade Poland in September

IRON AND ICE
First bite of space-grown lettuce is 'awesome'

Spaceflight may increase susceptibility to inflammatory bowel disease

First Time Ever: ISS Crew Eats Food Grown in Outer Space

US, Russia, China to Explore Benefits of Outer Space for ASEAN

IRON AND ICE
China to deploy space-air-ground sensors for environment protection

China's space exploration potential has US chasing its own tail

Chinese earth station is for exclusively scientific and civilian purposes

Cooperation in satellite technology put Belgium, China to forefront

IRON AND ICE
NASA Completes Selection of Crew Members for 2017 ISS Missions

NASA renews $490M contract with Russian Space Agency

ISS to Open Research Facility for Materials Science Research by 2017

Russian cosmonauts wrap up spacewalk

IRON AND ICE
Intelsat 34 fueled for heavy-lift mission with Ariane 5

ILS concludes Proton launch failure investigation

India to launch 9 US satellites in 2015, 2016

Payload checkout is advancing for Arianespace's September Soyuz flight

IRON AND ICE
Scientists solve planetary ring riddle

Astronomers discover new planet orbiting two stars

Overselling NASA

Exoplanets 20/20: Looking Back to the Future

IRON AND ICE
How CubeSats are Revolutionizing Radio Science

Big data analytical advances to exploration of universe

Disney Research produces 3D objects with variable elasticity using single material

New device converts DC electric field to terahertz radiation




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.