![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Boulder CO (SPX) Jun 27, 2017
Researchers from the National Institute of Standards and Technology (NIST) and the University of Colorado Boulder have demonstrated a new mobile, ground-based system that could scan and map atmospheric gas plumes over kilometer distances. The system uses an eye-safe laser instrument to send light that "combs" the air to a flying multi-copter and analyzes the colors of light absorbed along the way to identify gas signatures in near-real time. The "comb and copter" system may be useful to scan for leaks in oil and gas fields, study the mixing of auto emissions and other gases in the boundary between the Earth's surface and the next layer of the atmosphere, or, with planned upgrades, detect pollutants or chemical threats and their sources. As described in Optica, researchers used the comb light to measure carbon dioxide, methane and water vapor - greenhouse gases that heat the atmosphere - along a 2-kilometer (1.24 mile) round trip path between a telescope on a NIST Boulder laboratory roof and a retroreflector mounted on a small, unmanned aircraft. The multi-copter hovered in selected spots to measure gases along a horizontal path and at various altitudes of up to 120 meters (400 feet). Higher-altitude flights are technically feasible but currently limited by unmanned aerial vehicle flight rules. The results were even better than NIST's 2014 test of the laser combing system without a multi-copter. For example, the new system measured carbon dioxide levels of 1 part per million in just 60 seconds, compared to 200 seconds previously. "Now we can do the same sort of atmospheric measurements, with a little higher sensitivity, with a system that we can point to wherever we want," NIST physical chemist Kevin Cossel said. "The technology and sensitivity are promising." The laser instrument uses two frequency combs - measurement tools made up of thousands of precise frequencies or colors of light, like the teeth on a hair comb - to identify gases based on the amounts of specific colors of light absorbed. The 2014 test showed that the dual-comb technique can precisely, reproducibly sense trace gases in the atmosphere. In that work, the comb light sent by the telescope was returned from a mirror mounted on a nearby mountain. A reflector is needed to return the light to strengthen the signal before analysis by a detector at the telescope. The latest version of the instrument features several upgrades, including more power, an improved telescope and a lightweight retroreflector (a specialized 3-D mirror). NIST researchers also made the comb system more compact; it is now down to the size of a kitchen stove, so a vehicle could transport it. These changes, in addition to use of the customized multi-copter, make the entire system both more powerful and mobile. For all their laser expertise, NIST scientists found they needed to collaborate with unmanned aircraft flight experts on the University of Colorado's Integrated Remote and In Situ Sensing (IRISS) team. "Flying these things turned out to be challenging," NIST's Nathan Newbury explained. "It's not that easy to fly multi-copters - they have to be flown by someone skilled, or else the thing wanders off course, or worse, crashes. Anyone who's bought or received one for fun knows this." The multi-copter used in the experiment was fitted with a retroreflector as well as instruments for measuring location, temperature and air pressure, and path length. The telescope system must track the motion of the retroreflector as the multi-copter moves and hovers. The entire system retrieves gas concentrations every 10 seconds. The comb and copter system complements conventional technology. Mobile ground-based point sensors can make regional maps but must be driven in a vehicle or flown on a plane. Satellite instruments can sense atmospheric gases remotely with global coverage but sample specific regions on Earth infrequently and with only coarse spatial resolution. In the near future, researchers plan to use the flying comb system to study mixing in the Earth's boundary layer, a major source of uncertainty in atmospheric models, and to scan for emissions from oil and gas facilities, which can lead to the formation of ozone. The "comb and copter" system currently detects gas signatures in the near-infrared band of the spectrum. NIST researchers hope to extend that coverage to the mid-infrared, which would increase the number of detectable gases and enable applications such as scanning for chemical hazards and threats. Laser light in either band won't damage eyes, meaning it is safe for users and bystanders. In addition, longer flight times and path lengths should be possible as unmanned aircraft technology advances. The NIST group has already demonstrated that similar systems can operate over much longer path lengths of up to 12 km (7.5 mile) in a round trip. Paper: K.C. Cossel, E. Waxman, F.R. Giorgetta, M. Cermak, I.R. Coddington, D. Hesselius, S. Ruben, W.C. Swann, G.-W. Truong, G.B. Rieker and N.R. Newbury. Published June 23, 2017. Spatially scanned open-path dual comb spectroscopy to an airborne retroreflector. Optica. DOI: 10.1364/OPTICA.4.000724.
![]() Beijing, China (SPX) Jun 22, 2017 Aerosol is currently a hot topic both in scientific community. Scientists know it as a particulate matter, cloud condensation nuclei (CCN) or ice nuclei (IN) while aerosol is known to general public as PM2.5/10 as environmental pollution has become an increasing concern. Stratospheric aerosol, however, very far away from the Earth surface, receives too much less attention, partly because i ... read more Related Links National Institute of Standards and Technology Earth Observation News - Suppiliers, Technology and Application
![]()
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |