![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Sapporo, Japan (SPX) Sep 07, 2017
Researchers have found evidence that near-ground biogenic emissions of organics suppress cloud formation in cool-temperate forests in autumn, providing clues to how global warming will affect cloud formation and the overall climate. Submicron atmospheric aerosols, although they are not so visible, play a pivotal role in the climate system. They cause temperature variations by scattering or absorbing sunlight, while they also act as cloud condensation nuclei (CCN). Consequently, they can impact cloud cover and the precipitation process. Organic matter, which constitutes up to 90 percent of aerosols, is often attributable to biogenic sources. Many questions, however, remain as to how differences in variation and quantity of biogenic organics affect aerosols and cloud formation in a cool temperate forest which has vegetation highly susceptible to climate change. At the Tomakomai Experimental Forest, a cool temperate forest in northern Japan, the researchers of Hokkaido University collected submicron atmospheric aerosols one week at a time for each sample for around two years, resulting in 52 samples. They then analyzed the chemical compositions and CCN activities of the aerosol samples. Their research revealed a clear seasonal variation of CCN activity, which showed a maximum in summer and a minimum in autumn. Importantly, CCN activity is controlled by the mass ratio of sulfate and water-soluble organics. The ratio of sulfate, which facilitates cloud formation, is higher in summer and that of water-soluble organics is relatively higher in autumn. The study indicates an increased amount of water-soluble organics can coat sulfate particles, suppressing its CCN activity. Furthermore, the researchers found for the first time that aerosols originating from natural organics emitted from soil and litters (fallen leaves) on the forest floor can suppress cloud formation. This provides a new insight into the conventional belief that tree leaves are the primary source of organic gases and aerosols which can affect the cloud formation. Assistant Professor Yuzo Miyazaki of Hokkaido University, who led the research, said "In recent years, some studies have pointed out that the amount of organics emitted from the forest floor is similar to, or even larger than, that emitted from tree leaves in cool-temperate or other higher-latitude forested areas. "Our research should provide clues to evaluate how differences in the variety and amount of organics in high-latitude zones, which are vulnerable to global warming, will affect cloud formation and the overall climate in the future."
![]() Boulder CO (SPX) Sep 04, 2017 Airborne dust from Asia travels across the Pacific passport-free, carrying pollution, building soil, and coloring sunsets thousands of miles from its source. Identifying that source is important for understanding atmospheric circulation, contaminant pathways, and climate. But collecting enough airborne dust to pinpoint its source is challenging. Now, a team of researchers has developed a w ... read more Related Links Hokkaido University Earth Observation News - Suppiliers, Technology and Application
![]()
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |