. | . |
Chemists find metal in 'metal-free' catalysts by Staff Writers Houston TX (SPX) Mar 06, 2018
Detective work by Rice University chemists has defined a deception in graphene catalysts that, until now, has defied description. Graphene has been widely tested as a replacement for expensive platinum in applications like fuel cells, where the material catalyzes the oxygen reduction reaction (ORR) essential to turn chemical energy into electrical energy. Because graphene, the atom-thick form of carbon, isn't naturally metallic, researchers have been baffled by its catalytic activity when used as a cathode. Wonder no more, said Rice chemist James Tour and his crew, who have discovered that trace quantities of manganese contamination from graphite precursors or reactants hide in the graphene lattice. Under the right conditions, those metal bits activate the ORR. Tour said they also provide insight into how ultrathin catalysts like graphene can be improved. The research appears in the journal Carbon. Because the contrast between carbon and manganese atoms is so slight, trace atoms of the contaminants can't be seen with traditional characterization techniques like X-ray diffraction and X-ray photoelectron spectroscopy (XPS). "Labs have reported 'metal-free' graphene catalysts, and the evidence they've gathered could easily be interpreted to show that," Tour said. "In fact, the tools they were using simply weren't sensitive enough to show the manganese atoms." A more sensitive tool, inductively coupled plasma mass spectrometry (ICP-MS), clearly saw the interlopers among samples made by the Rice lab. Nitrogen-doped graphene test samples were reduced from graphene oxide and then acid-washed between one and six times. With each wash, the ICP-MS scan showed fewer manganese atoms and detected none in graphene samples washed six times. By the fifth wash, the catalytic activity totally changed and showed the former activity had been due to those residual metal atoms. The lab reported no manganese atoms were observed in any of the same samples using conventional analytical tools, including XPS or transmission electron microscopy. The researchers characterized the samples' ORR activity and found twice-washed nitrogen-graphene was most effective. These samples tended to incorporate single atoms of manganese into the graphene structure, which facilitated full reduction of oxygen through a four-electron process in which four electrons are transferred to oxygen atoms, usually from hydrogen. "In a four-electron process, oxygen is reduced to water or hydroxide," said Rice graduate student Ruquan Ye, the paper's lead author. "However, peroxide is formed in a two-electron process, which results in a lower diffusion-limited current density and generates hazardous reactive oxygen species." Ye said that without metal, the ORR in graphene is far less efficient. Tour said the results should lead to investigation of the role of trace metals in other materials thought to be metal-free. "Single-atom catalysts can hide among graphene, and their activity is profound," he said. "So what has sometimes been attributed to the graphene was really the single metal buried into the graphene surface. Graphene is good in its own right, but in these cases, it was being made to look even better by these single metal-atom stowaways." Co-authors are graduate students Luqing Wang and Yilun Li and Boris Yakobson, the Karl F. Hasselmann Professor of Materials Science and NanoEngineering and a professor of chemistry; Ruben Mendoza-Cruz of Rice and the University of Texas at San Antonio; Miguel Jose Yacaman of the University of Texas at San Antonio; and Juncai Dong, Peng-Fei An and Dongliang Chen of the Chinese Academy of Sciences, Beijing. The research was supported by the Air Force Office of Scientific Research, the Office of Naval Research, the National Center for Research Resources, the National Science Foundation-Partnerships for Research and Education in Materials, the National Institutes of Health's National Institute on Minority Health and Health Disparities, the National Natural Science Foundation of China and the Jianlin Xie Foundation of the Institute of High Energy Physics, Chinese Academy of Science.
Splitting crystals for 2-D metallic conductivity Sendai, Japan (SPX) Mar 06, 2018 Sheets of electrons that are highly mobile in only two dimensions, known as 2D electron gas, have unique properties that can be leveraged for faster and novel electronic devices. Researchers have been exploring 2D electron gas, which was only discovered in 2004, to see how it can be used in superconductors, actuators, and electronic memory devices, among others. Researchers at Japan's Tohoku University, with an international team of colleagues, recently identified the atomic structure of a group o ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |