![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers San Diego CA (SPX) Jun 05, 2018
Engineers at the University of California San Diego have developed tiny ultrasound-powered robots that can swim through blood, removing harmful bacteria along with the toxins they produce. These proof-of-concept nanorobots could one day offer a safe and efficient way to detoxify and decontaminate biological fluids. Researchers built the nanorobots by coating gold nanowires with a hybrid of platelet and red blood cell membranes. This hybrid cell membrane coating allows the nanorobots to perform the tasks of two different cells at once - platelets, which bind pathogens like MRSA bacteria (an antibiotic-resistant strain of Staphylococcus aureus), and red blood cells, which absorb and neutralize the toxins produced by these bacteria. The gold body of the nanorobots responds to ultrasound, which gives them the ability to swim around rapidly without chemical fuel. This mobility helps the nanorobots efficiently mix with their targets (bacteria and toxins) in blood and speed up detoxification. The work, published May 30 in Science Robotics, combines technologies pioneered by Joseph Wang and Liangfang Zhang, professors in the Department of NanoEngineering at the UC San Diego Jacobs School of Engineering. Wang's team developed the ultrasound-powered nanorobots, and Zhang's team invented the technology to coat nanoparticles in natural cell membranes. "By integrating natural cell coatings onto synthetic nanomachines, we can impart new capabilities on tiny robots such as removal of pathogens and toxins from the body and from other matrices," said Wang. "This is a proof-of-concept platform for diverse therapeutic and biodetoxification applications." "The idea is to create multifunctional nanorobots that can perform as many different tasks at once," said co-first author Berta Esteban-Fernandez de Avila, a postdoctoral scholar in Wang's research group at UC San Diego. "Combining platelet and red blood cell membranes into each nanorobot coating is synergistic - platelets target bacteria, while red blood cells target and neutralize the toxins those bacteria produce." The coating also protects the nanorobots from a process known as biofouling - when proteins collect onto the surface of foreign objects and prevent them from operating normally. Researchers created the hybrid coating by first separating entire membranes from platelets and red blood cells. They then applied high-frequency sound waves to fuse the membranes together. Since the membranes were taken from actual cells, they contain all their original cell surface protein functions. To make the nanorobots, researchers coated the hybrid membranes onto gold nanowires using specific surface chemistry. The nanorobots are about 25 times smaller than the width of a human hair. They can travel up to 35 micrometers per second in blood when powered by ultrasound. In tests, researchers used the nanorobots to treat blood samples contaminated with MRSA and their toxins. After five minutes, these blood samples had three times less bacteria and toxins than untreated samples. The work is still at an early stage. Researchers note that the ultimate goal is not to use the nanorobots specifically for treating MRSA infections, but more generally for detoxifying biological fluids. Future work includes tests in live animals. The team is also working on making nanorobots out of biodegradable materials instead of gold.
Research Report: "Hybrid biomembrane-functionalized nanorobots for concurrent removal of pathogenic bacteria and toxins."
![]() ![]() Now, you can hold a copy of your brain in the palm of your hand Boston MA (SPX) May 31, 2018 What if you could hold a physical model of your own brain in your hands, accurate down to its every unique fold? That's just a normal part of life for Steven Keating, Ph.D., who had a baseball-sized tumor removed from his brain at age 26 while he was a graduate student in the MIT Media Lab's Mediated Matter group. Curious to see what his brain actually looked like before the tumor was removed, and with the goal of better understanding his diagnosis and treatment options, Keating collected his medi ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |