Subscribe free to our newsletters via your
. 24/7 Space News .




CLIMATE SCIENCE
Carbon emissions to impact climate beyond the day after tomorrow
by Staff Writers
Honolulu HI (SPX) Aug 08, 2013


File image.

Future warming from fossil fuel burning could be more intense and longer-lasting than previously thought. This prediction emerges from a new study by Richard Zeebe at the University of Hawai'i who includes insights from episodes of climate change in the geologic past to inform projections of man-made future climate change. The study is published in the Proceedings of the National Academy of Sciences.

Humans keep adding large amounts of greenhouse gases to the atmosphere, among them carbon dioxide (CO2), the most important man-made greenhouse gas. Over the past 250 years, human activities such as fossil fuel burning have raised the atmospheric CO2 concentration by more than 40% over its preindustrial level of 280 ppm (parts per million).

In May 2013, the CO2 concentration in Earth's atmosphere surpassed a milestone of 400 ppm for the first time in human history, a level that many scientists consider dangerous territory in terms of its impact on Earth's climate.

A global cooling calamity as depicted in the movie 'The Day After Tomorrow,' though, is very unlikely to be the result of climate change. The globe is likely to become warmer in the near future, and probably a lot warmer in the distant future. Now Zeebe, Professor of Oceanography in the School of Ocean and Earth Science and Technology at the University of Hawai'i at Manoa, has examined mankind's long-term legacy of fossil fuel burning.

The study suggests that amplified and prolonged warming due to unabated fossil fuel burning raises the probability that large ice sheets such as the Greenland ice sheet will melt, leading to significant sea level rise.

"When we talk about climate sensitivity, we're referring to how much the planet's global surface temperature rises for a given amount of CO2 in the atmosphere," Zeebe said. A standard value for present-day climate sensitivity is about 3 C per doubling of atmospheric CO2. But according to Zeebe, climate sensitivity could change over time. Zeebe uses past climate episodes as analogs for the future, which suggest that so-called slow climate 'feedbacks' can boost climate sensitivity and amplify warming.

An example of a feedback is the familiar audio feedback experienced when a microphone interacts with a speaker. If the audio output from the speaker is received again by the microphone, the initial audio signal is strongly amplified in a positive feedback loop.

A variety of feedbacks also operate in Earth's climate system. For example, a positive feedback loop exists between temperature, snow cover, and absorption of sunlight. When snow melts in response to warming, more sunlight can be absorbed at Earth's surface because most surfaces have a lower reflectivity than snow. In turn, the additional absorption of sunlight leads to further warming, which leads to more snow melt, and so forth.

Previous studies have usually only included fast climate feedbacks (snow cover, clouds, etc.). Using information from pre-historic climate archives, Zeebe calculated how slow climate feedbacks (land ice, vegetation, etc.) and climate sensitivity may evolve over time. Armed with these tools, Zeebe was able to make new predictions about long-term future climate change.

"The calculations showed that man-made climate change could be more severe and take even longer than we thought before" says Zeebe. Although we will not see immediate effects by tomorrow - some of the slow processes will only respond over centuries to millennia - the consequences for long-term ice melt and sea level rise could be substantial. "Politicians may think in four-year terms but we as scientists can and should think in much longer terms. We need to put the impact that humans have on this planet into a historic and geologic context."

"By continuing to put these huge amounts of carbon dioxide in the atmosphere, we're gambling with climate and the outcome is still uncertain," Zeebe said. "The legacy of our fossil fuel burning today is a hangover that could last for tens of thousands of years, if not hundreds of thousands of years to come."

Zeebe, R. E., Time-dependent climate sensitivity and the legacy of anthropogenic greenhouse gas emissions, Proceedings of the National Academy of Sciences, 110, doi:10.1073/pnas.1222843110, Aug 05, 2013.

.


Related Links
School of Ocean and Earth Science and Technology
Climate Science News - Modeling, Mitigation Adaptation






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CLIMATE SCIENCE
Climate strongly affects human conflict and violence worldwide
Berkeley CA (SPX) Aug 07, 2013
Shifts in climate are strongly linked to human violence around the world, with even relatively minor departures from normal temperature or rainfall substantially increasing the risk of conflict in ancient times or today, according to a new study by researchers at the University of California, Berkeley, and Princeton University. The results, which cover all major regions of the world and sh ... read more


CLIMATE SCIENCE
NASA Selects Launch Services Contract for OSIRIS-REx Mission

Environmental Controls Move Beyond Earth

Bad night's sleep? The moon could be to blame

Moon Base and Beyond

CLIMATE SCIENCE
Big ice may explain Mars' double-layer craters

Full Curiosity Traverse Passes One-Mile Mark

Curious craters on Mars said result of impacts into ancient ice

NASA Begins Launch Preparations for Next Mars Mission

CLIMATE SCIENCE
Study: Teleportation would have a slight time-to-transmit problem

NASA technologist makes traveling to hard-to-reach destinations easier

First Liquid Hydrogen Tank Barrel Segment for SLS Core Completed

Tenth Parachute Test for NASA's Orion Adds 10,000 Feet of Success

CLIMATE SCIENCE
China launches three experimental satellites

Medical quarantine over for Shenzhou-10 astronauts

China's astronauts ready for longer missions

Chinese probe reaches record height in space travel

CLIMATE SCIENCE
NASA's Firestation on way to ISS

Weekly recap from the International Space Station expedition lead scientist

NSBRI Wants Ideas To Support Space Crew Health and Performance

NASA narrows list of possible culprits in spacesuit water leak

CLIMATE SCIENCE
Next Ariane 5 is readied to receive its dual-satellite payload

Russia to restart Proton rocket launches after crash

Japanese rocket takes supplies, robot to space station

SpaceX Awarded Launch Reservation Contract for Largest Canadian Space Program

CLIMATE SCIENCE
Astronomers Image Lowest-mass Exoplanet Around a Sun-like Star

New Explorer Mission Chooses the 'Just-Right' Orbit

'Blinking' stellar system may yield clues to planet formation

Pulsating star sheds light on exoplanet

CLIMATE SCIENCE
New 'weird' material may be new class of solids, researchers say

Large Area Picosecond Photodetectors push timing envelope

Seeing depth through a single lens

Altering organic molecules' interaction with light




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement