. 24/7 Space News .
WATER WORLD
CO2 keeps even small fry invasive carp at bay
by Staff Writers
Urbana IL (SPX) Nov 27, 2015


Silver and bighead (also known as Asian) carp grow rapidly and eat the zooplankton (small animals) and phytoplankton (small plants) that other fish and other aquatic organisms depend upon and pull the rug out from under the food chain. Image courtesy of Asian Carp Regional Coordinating Committee. For a larger version of this image please go here.

University of Illinois researcher Cory Suski has already shown that bubbling high concentrations of carbon dioxide (CO2) into water is a deterrent to invasive Asian carp adults. The gas makes them feel 'woozy' and they choose to swim away. His recent research shows that fish the size of an eyelash also experience negative consequences following CO2 exposure.

"We conducted carbon dioxide challenge experiments on juveniles of four species - largemouth bass, bluegill, silver carp, and bighead carp, and on eight-day-old hatched fry of both carp species," Suski said. "Results from the study demonstrate that juvenile fishes of all four species actively avoid areas of water with elevated CO2 once concentrations reached approximately 200 milligrams per liter, which is lower than a can of carbonated soda."

Suski explained that the larvae they used were so tiny that their behavior couldn't be tested so gene expression data were used. "Even at only eight days old, there are physiological problems happening to those animals when they are put into a high CO2 environment," he said. "The biomarkers of stress turned on. So we now have evidence all the way from large adult fish to eight-day-old fish that CO2 causes disturbance."

Believing that two barriers are better than one, Suski suggests that carbon dioxide be used to keep invasive species from entering Lake Michigan by working in tandem with electric barriers. The electric barriers emit a low-voltage charge. As large fish swim toward the electric barrier, they sense the charge and swim away. Unfortunately, no non-physical barrier is 100 percent effective against all fish in all situations so additional barriers would help with control.

"What we've found is that none of these non-physical barriers is 100 percent effective - electricity, strobe lights, bubble curtains, and I'd even put CO2 in that category," he said. "They all have drawbacks. For example, the electric barriers are prone to shut down due to routine maintenance and power outages, and when debris clogs them, leaving the canals vulnerable to aquatic invaders. Also, working near the electric barriers on repairs poses health and safety concerns for the maintenance crew and shipmen."

Suski says the CO2 method doesn't pose safety risks, is relatively cheap to use, and is portable with little installation or equipment required. The gas can be easily pumped into a small backwater area where there are known populations of carp - basically with a hose and tank of CO2.

"The suppliers we have used to date have obtained waste CO2 from oil and gas refineries or from soybean processing plants so we're not smelting coal to generate carbon dioxide," he added. "We're taking waste CO2 and repurposing it."

So far, the CO2 method has been tested in small laboratory tanks, ponds, and most recently at the Upper Midwest Environmental Science Center in Lacrosse, Wisc., on a much larger scale - 1.6 million gallons of water covering half an acre. The preliminary findings from this test mirror the results from those on a smaller scale.

Suski describes his work on CO2 as a progression and more of a research program. Tests have been conducted on a variety of scales and a range of species, including another Great Lakes invader, the sea lamprey. "Lamprey is an ancient species that predates animals with jaws," Suski said. "So from an evolutionary perspective, we have data ranging from ancient species, to carp that originated in Asia, and largemouth bass and bluegill that originated in North America - a great diversity of fish that span a long time frame."

According to Suski, Asian carp grow rapidly and eat the zooplankton (small animals) and phytoplankton (small plants) that other fish and other aquatic organisms depend upon and pull the rug out from under the food chain. They've already invaded the Mississippi River all the way to Minnesota and are about 21 miles downstream from the electric barriers in the Chicago Area Waterway System.

"If they get into the Great Lakes, they have potential to spread throughout eastern North America," Suski said.

'Molecular and behavioral responses of early-life stage fishes to elevated carbon dioxide' was written by Clark E. Dennis III, Shivani Adhikari, and Cory D. Suski and was published in a recent issue of Biological Invasions.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Illinois College of Agricultural, Consumer and Environmental Sciences
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
WATER WORLD
Sharks' hunting ability destroyed under climate change
Adelaide, Australia (SPX) Nov 19, 2015
The hunting ability and growth of sharks will be dramatically impacted by increased CO2 levels and warmer oceans expected by the end of the century, a University of Adelaide study has found. Published in the journal Scientific Reports, marine ecologists from the University of Adelaide's Environment Institute report long-term experiments that show warmer waters and ocean acidification will ... read more


WATER WORLD
Gaia's sensors scan a lunar transit

SwRI scientists explain why moon rocks contain fewer volatiles than Earth's

All-female Russian crew starts Moon mission test

Russian moon mission would need 4 Angara-A5V launches

WATER WORLD
Study: Mars to become a ringed planet following death of its moon

A witness to a wet early Mars

NASA completes heat shield testing for future Mars exploration vehicles

Curiosity Mars Rover Heads Toward Active Dunes

WATER WORLD
XCOR develops Lynx Simulator

Orion ingenuity improves manufacturing while reducing mass

Orion's European module ready for testing

General Dynamics demos SGSS Command and Control Infrastructure for NASA

WATER WORLD
China to launch Dark Matter Satellite in mid-December

China to better integrate satellite applications with Internet

China's satellite expo opens

New rocket readies for liftoff in 2016

WATER WORLD
ISS EarthKAM ready for student imaging request

Partners in Science: Private Companies Conduct Valuable Research on the Space Station

SAGE III Leaves Langley for Journey to ISS

New Crew to Stay Aboard ISS for 7 Months Instead of 6

WATER WORLD
NASA Orders SpaceX Crew Mission to International Space Station

NASA Selects New Technologies for Parabolic Flights and Suborbital Launches

United Launch Alliance exits launch competition, leaving SpaceX

Spaceport America opens up two new campuses

WATER WORLD
Forming planet observed for first time

UA researchers capture first photo of planet in making

Rocket Scientists to Launch Planet-Finding Telescope

5400mph winds discovered hurtling around planet outside solar system

WATER WORLD
Creating a new vision for multifunctional materials

3-D printing aids in understanding food enjoyment

Success in producing a completely rare-earth free Feni magnet

Bringing the chaos in light sources under control









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.