. 24/7 Space News .
CHIP TECH
Bristol scientists pinpoint the singularity for quantum computers
by Staff Writers
Bristol UK (SPX) Oct 05, 2017


Dr Anthony Laing, Chris Sparrow and Alex Neville.

Researchers from the University of Bristol have discovered that super-powerful quantum computers, which scientists and engineers across the world are racing to build, need to be even more powerful than previously thought before they can beat today's ordinary PCs.

Quantum computers are a new type of machine that operate on quantum mechanical hardware and are predicted to give enormous speed advantages in solving certain problems.

Research groups at leading universities and companies, including Google, Microsoft and IBM, are part of a worldwide race to realise the first quantum computer that crosses into the 'quantum computational singularity'. This represents a problem so complex that today's top supercomputer would take centuries to find a solution, while a quantum computer could crack it in minutes.

Now a team of scientists from Bristol have discovered that the boundary to this singularity is further away than previously thought. The research is reported this week in Nature Physics.

The results apply to a highly influential quantum algorithm known as 'boson sampling', which was devised as a very direct route to demonstrate quantum computing's supremacy over classical machines.

The boson sampling problem is designed to be solved by photons (particles of light) controlled in optical chips - technology pioneered by Bristol's Quantum Engineering and Technology Labs (QETLabs).

Predicting the pattern of many photons emerging from a large optical chip is related to an extremely hard random matrix calculation.

With the rapid progress in quantum technologies, it appeared as though a boson sampling experiment that crossed into the quantum computational singularity was within reach. However, the Bristol team were able to redesign an old classical algorithm to simulate boson sampling, with dramatic consequences.

Dr Anthony Laing, who heads a group in QETLabs and led this research, said: "It's like tuning up an old propeller aeroplane to go faster than an early jet aircraft.

"We're at a moment in history where it is still possible for classical algorithms to outperform the quantum algorithms that we expect to ultimately be supersonic.

"But demonstrating such a feat meant assembling a crack team of scientists, mathematicians, and programmers."

Classical algorithms expert Dr Raphael Clifford, from Bristol's Department of Computer Science, redesigned several classical algorithms to attack the boson sampling problem, with the 1950's Metropolised Independence Sampling algorithm giving the best performance.

The simulation code was optimised by QETLabs researcher 'EJ', a former LucasArts programmer. Expertise on computational complexity came from Dr Ashley Montanaro, of Bristol's School of Mathematics, while QETLabs students Chris Sparrow and Patrick Birchall worked out the projected performance of the competing quantum photonics technology.

At the heart of the project and bringing all these strands together was QETLabs PhD student and first author on the paper, Alex Neville, who tested, implemented, compared, and analysed, all of the algorithms.

He said: "The largest boson sampling experiment reported so far is for five photons.

"It was believed that 30 or even 20 photons would be enough to demonstrate quantum computational supremacy."

Yet he was able to simulate boson sampling for 20 photons on his own laptop, and increased the simulation size to 30 photons by using departmental servers. Alex added: "With access to today's most powerful supercomputer, we could simulate boson sampling with 50 photons."

The research builds on Bristol's reputation as a centre of activity for quantum science and the development of quantum technologies.

Through QETLabs, the university has embarked on an ambitious programme to bring quantum technologies out of the laboratory and engineer them in to useful devices that have real-world applications for tackling some of society's toughest problems.

In addition to collaborations with tech companies such as Microsoft, Google, and Nokia, start-ups and new business activities focused on quantum technologies have emerged in Bristol.

An important theme across the overall quantum research activity is developing our understanding of exactly how quantum technologies can provably outperform conventional computers.

Recently Dr Montanaro, together with Professor Noah Linden of the School of Mathematics, organised a Heilbronn Focused Research Group on the topic of quantum computational supremacy.

This meeting brought some of the world leaders in the field, from both industry and academia, to Bristol for a week of intense discussions and collaboration. Among the attendees was one of the theorists who devised boson sampling, Professor Scott Aaronson, from UT Austin.

Although outperforming classical computers might take a little longer than originally hoped, Dr Laing is still optimistic about the prospects for building a device to do just that. He said: "We now have a solid idea of the technological challenge we must meet to demonstrate that quantum machines can out-compute their classical counterparts. For boson sampling, the singularity lies just beyond 50 photons. It's a tougher nut to crack than we first thought, but we still fancy our chances."

With Dr Laing's group focused on practical applications of quantum technologies, the current work puts bounds on the size and sophistication of photonic devices that will be required to tackle industrially relevant problems that are beyond the capabilities of today's classical algorithms.

'Classical boson sampling algorithms with superior performance to near-term experiments' by A. Neville, C. Sparrow, R. Clifford, E. Johnston, P. Birchall, A. Montanaro and A. Laing in Nature Physics.

CHIP TECH
Head of Taiwan microchip giant TSMC set to retire
Taipei (AFP) Oct 2, 2017
The man who founded Taiwan Semiconductor Manufacturing (TSMC) and made it the world's biggest microchip producer in terms of contracts announced Monday he would retire next year. Morris Chang, one of Taiwan's most revered business leaders, worked at US firm Texas Instruments and later headed Taiwan's Industrial Technology Research Institute before founding TSMC in 1987. Often called the ... read more

Related Links
University of Bristol
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Space Cooperation Between China, Russia Needs Long-Term Mechanism

NASA's New Hubble E-Book Series Dives into the Solar System and Beyond

Mapping NASA's Space Missions

Aussie astronaut calls for establishment of national space agency

CHIP TECH
What looks good on paper may look good in space

Demonstrator 3 linear aerospike ready to start tests

ISRO to resume satellite launches by December

Mechanisms are Critical to Space Vehicle Flight Success

CHIP TECH
The Mars 2020 Rover features new spectral abilities with its new SuperCam

Devilish Source of Dust in Atmosphere of Earth and Mars

3-D Analysis Offers New Info on Martian Climate Change, Age of Polar Caps

HIAD heat shield material feels the burn during arc jet testing

CHIP TECH
Mars probe to carry 13 types of payload on 2020 mission

China's cargo spacecraft separates from Tiangong-2 space lab

Work on China's mission to Mars 'well underway'

Chinese company eyes development of reusable launch vehicle

CHIP TECH
The ESA 500: fostering start-up companies to use space technology on Earth

Thomas calls for new comprehensive Australian Space Agency at IAC address

AsiaSat 9 Set for Launch from Baikonur on September 29

Australia to create national space agency

CHIP TECH
UV-irradiated amorphous ice behaves like liquid at low temperatures

The 3-D selfie has arrived

Ultracold atoms point toward an intriguing magnetic behavior

Researchers developing new technique that uses light to separate mirrored molecules

CHIP TECH
Scientists propose new concept of terrestrial planet formation

The return of the comet-like exoplanet

New prediction of a detection wavelength for searching phototrophs on exoplanets

Hubble observes pitch black planet

CHIP TECH
Solving the Mystery of Pluto's Giant Blades of Ice

Global Aerospace Corporation to present Pluto lander concept to NASA

Pluto features given first official names

Hibernation Over, New Horizons Continues Kuiper Belt Cruise









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.