Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
Black hole-star pair orbiting at dizzying speed
by Staff Writers
Paris (ESA) Mar 22, 2013


MAXI J1659�-152. View full animation here.

ESA's XMM-Newton space telescope has helped to identify a star and a black hole that orbit each other at the dizzying rate of once every 2.4 hours, smashing the previous record by nearly an hour.

The black hole in this compact pairing, known as MAXI J1659-152, is at least three times more massive than the Sun, while its red dwarf companion star has a mass only 20% that of the Sun. The pair is separated by roughly a million kilometres.

The duo were discovered on 25 September 2010 by NASA's Swift space telescope and were initially thought to be a gamma-ray burst. Later that day, Japan's MAXI telescope on the International Space Station found a bright X-ray source at the same place.

More observations from ground and space telescopes, including XMM-Newton, revealed that the X-rays come from a black hole feeding off material ripped from a tiny companion.

Several regularly-spaced dips in the emission were seen in an uninterrupted 14.5 hour observation with XMM-Newton, caused by the uneven rim of the black hole's accretion disc briefly obscuring the X-rays as the system rotates, its disc almost edge-on along XMM-Newton's line of sight.

From these dips, an orbital period of just 2.4 hours was measured, setting a new record for black hole X-ray binary systems. The previous record-holder, Swift J1753.5-0127, has a period of 3.2 hours.

The black hole and the star orbit their common centre of mass. Because the star is the lighter object, it lies further from this point and has to travel around its larger orbit at a breakneck speed of two million kilometres per hour - it is the fastest moving star ever seen in an X-ray binary system. On the other hand, the black hole orbits at 'only' 150 000 km/h.

"The companion star revolves around the common centre of mass at a dizzying rate, almost 20 times faster than Earth orbits the Sun. You really wouldn't like to be on such a merry-go-round in this Galactic fair!" says lead author Erik Kuulkers of ESA's European Space Astronomy Centre in Spain.

His team also saw that they lie high above the Galactic plane, out of the main disc of our spiral Galaxy, an unusual characteristic shared only by two other black-hole binary systems, including Swift J1753.5-0127.

"These high galactic latitude locations and short orbital periods are signatures of a potential new class of binary system, objects that may have been kicked out of the Galactic plane during the explosive formation of the black hole itself," says Dr Kuulkers.

Returning to MAXI J1659-152, the quick response of XMM-Newton was key in being able to measure the remarkably short orbital period of the system.

"Observations started at tea-time, just five hours after we received the request to begin taking measurements, and continued until breakfast the next day. Without this rapid response it would not have been possible to discover the fastest rotation yet known for any binary system with a black hole," adds Norbert Schartel, ESA's XMM-Newton project scientist.

"MAXI J1659-152: The shortest orbital period black-hole transient in outburst," by E. Kuulkers et al. is published in Astronomy and Astrophysics, 552, A32 (2013).

.


Related Links
XMM-Newton
NASA Swift
MAXI
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Herschel gets to the bottom of black hole jets
Paris (ESA) Mar 14, 2013
Astronomers using ESA's Herschel space observatory have detected emission from the base of black-hole jets for the first time. While studying the black-hole binary system GX 339-4 in a multi-wavelength observation campaign, they noticed changes in the source's X-ray and radio emissions signalling the onset of powerful jets being released from the black hole's vicinity. This prompted the astronom ... read more


TIME AND SPACE
NASA's LRO Sees GRAIL's Explosive Farewell

Amazon's Bezos recovers Apollo 11 engines

Leaping Lunar Dust

Lunar Orbiter Image Recovery Project Seeks Public Support To Retrieve Apollo Era Moon Images

TIME AND SPACE
Sun in the Way Will Affect Mars Missions in April

ChemCam data abundant at Planetary Conference

Los Alamos science sleuth on the trail of a Martian mystery

Curiosity Rover Exits 'Safe Mode'

TIME AND SPACE
NASA Voyager Status Update on Voyager 1 Location

Voyager 1 has entered a new region of space

NASA denies report that Voyager left solar system

Reproduction In Zero Gravity

TIME AND SPACE
Shenzhou 10 - Next Stop: Jiuquan

China's fourth space launch center to be in use in two years

China to launch new manned spacecraft

Woman expected again to join next China crew roster

TIME AND SPACE
ESA seeks innovators for orbiting laboratory

New ISS crew prepares for launch

Space crew returns to Earth from ISS

Canadian commands space station for first time

TIME AND SPACE
Sea Launch and EchoStar Reach Preliminary Agreement for Launch Services

Estonia's student cubesat satellite is ready for the next Vega launch

Vega receives its upper stage as the next mission's two primary passengers land in French Guiana

Grasshopper Successfully Completes 80M Hover Slam

TIME AND SPACE
Astronomers Detect Water in Atmosphere of Distant Planet

Distant planetary system is a super-sized solar system

Water signature in distant planet shows clues to its formation

The Great Exoplanet Debate

TIME AND SPACE
Smartphone app turns home drone into spacecraft

Scientists claim new glasses-free 3D for cellphone

NASA Awards Astrotech Contract For SMAP Spacecraft Processing

Videogame power harnessed for positive goals




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement