|
. | . |
|
by Staff Writers Washington DC (SPX) Aug 01, 2015
By studying how water striders jump on water, Je-Sung Koh and colleagues have created a robot that can successfully launch itself from the surface of water. As the team watched the water strider jump on water surfaces using high-speed cameras, they noticed that the long legs accelerate gradually, so that the water surface doesn't retreat too quickly and lose contact with the legs. Using a theoretical model of a flexible cylinder floating on liquid, the authors found that the maximum force of the water striders' legs is always just below the maximum force that water surface tension can withstand. To recreate this controlled acceleration in their robot, the researchers used a torque reversal catapult (TRC) mechanism that generates a small initial torque and gradually increases - but that never exceeds the surface tension force of water. As well, the high-speed cameras reveal that the water strider sweeps its legs inward in order to maximize the time the legs can push against the surface of the water, thus maximizing the overall force; this additional concept was also applied to the robots to help them achieve lift off. With sufficiently light weight, long limbs, and the proper physical mechanisms, these robots effectively mimic their inspirational counterparts in nature. This paper is accompanied by an explanatory video that includes footage of the robots jumping, as well as a Perspective by Dominic Vella.
Related Links American Association for the Advancement of Science All about the robots on Earth and beyond!
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |