Subscribe free to our newsletters via your
. 24/7 Space News .




ENERGY TECH
Better batteries from waste sulfur
by Staff Writers
Tucson AZ (SPX) Apr 16, 2013


A University of Arizona-led research team has discovered a simple process for making a new lightweight plastic from the inexpensive and abundant element sulfur. The petri dish on the left contains the plastic. The yellow powder on the right is sulfur. The team has already made a lithium-sulfur battery -- the type of next- generation battery that is lighter and cheaper than those currently used in electric and hybrid cars. Credit: Jared Griebel/ Pyun lab, University of Arizona department of chemistry and biochemistry.

A new chemical process can transform waste sulfur into a lightweight plastic that may improve batteries for electric cars, reports a University of Arizona-led team. The new plastic has other potential uses, including optical uses. The team has successfully used the new plastic to make lithium-sulfur batteries.

"We've developed a new, simple and useful chemical process to convert sulfur into a useful plastic," lead researcher Jeffrey Pyun said.

Next-generation lithium-sulfur, or Li-S, batteries will be better for electric and hybrid cars and for military uses because they are more efficient, lighter and cheaper than those currently used, said Pyun, a UA associate professor of chemistry and biochemistry.

The new plastic has great promise as something that can be produced easily and inexpensively on an industrial scale, he said.

The team's discovery could provide a new use for the sulfur left over when oil and natural gas are refined into cleaner-burning fuels.

Although there are some industrial uses for sulfur, the amount generated from refining fossil fuels far outstrips the current need for the element. Some oil refineries, such as those in Ft. McMurray in Alberta, are accumulating yellow mountains of waste sulfur.

"There's so much of it we don't know what to do with it," said Pyun. He calls the left-over sulfur "the garbage of transportation."

About one-half pound of sulfur is left over for every 19 gallons of gasoline produced from fossil fuels, calculated co-author Jared Griebel, a UA chemistry and biochemistry doctoral candidate.

The researchers have filed an international patent for their new chemical process and for the new polymeric electrode materials for Li-S batteries.

Pyun wanted to apply his expertise as a chemist to energy-related research. He knew about the world's glut of elemental sulfur at fossil fuel refineries -- so he focused on how chemistry could use the cheap sulfur to satisfy the need for good Li-S batteries.

He and his colleagues tried something new: transforming liquid sulfur into a useful plastic that eventually could be produced easily on an industrial scale.

Sulfur poses technical challenges. It doesn't easily form the stable long chains of molecules, known as polymers, needed make a moldable plastic, and most materials don't dissolve in sulfur.

Pyun and his colleagues identified the chemicals most likely to polymerize sulfur and girded themselves for the long process of testing those chemicals one by one by one. More than 20 chemicals were on the list.

They got lucky.

"The first one worked - and nothing else thereafter," Pyun said.

Even though the first experiment worked, the scientists needed to try the other chemicals on their list to see if others worked better and to understand more about working with liquid sulfur.

They've dubbed their process "inverse vulcanization" because it requires mostly sulfur with a small amount of an additive. Vulcanization is the chemical process that makes rubber more durable by adding a small amount of sulfur to rubber.

The new plastic performs better in batteries than elemental sulfur, Pyun said, because batteries with cathodes made of elemental sulfur can be used and recharged only a limited number of times before they fail.

The new plastic has electrochemical properties superior to those of the elemental sulfur now used in Li-S batteries, the researchers report. The team's batteries exhibited high specific capacity (823 mAh/g at 100 cycles) and enhanced capacity retention.

Several companies have expressed interest in the new plastic and the new battery, Pyun said.

The team's next step is comparing properties of the new plastic to existing plastics and exploring other practical applications such as photonics for the new plastic.

The international team's research article, "The Use of Elemental Sulfur as an Alternative Feedstock for Polymeric Materials," is scheduled for online publication in Nature Chemistry April 14. The National Research Foundation of Korea, the Korean Ministry of Education, Science and Technology, the American Chemical Society and the University of Arizona funded the research. Pyun and Griebel's co-authors are Woo Jin Chung, Adam G. Simmonds, Hyun Jun Ji, Philip T. Dirlam, Richard S. Glass and Arpad Somogyi of the UA; Eui Tae Kim, Hyunsik Yoon, Jungjin Park, Yung-Eun Sung, and Kookheon Char of Seoul National University in Korea; Jeong Jae Wie, Ngoc A. Nguyen, Brett W. Guralnick and Michael E. Mackay of the University of Delaware in Newark; and Patrick Theato of the University of Hamburg in Germany.

.


Related Links
University of Arizona
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
Tortuous paths hamper ion transport
Zurich, Switzerland (SPX) Apr 11, 2013
ETH-Zurich researchers use x-ray tomography to screen lithium ion battery electrodes and can reconstruct the microstructure in high resolution. This helps to understand the discharging and charging process better and develop optimised electrodes. Mobile phone batteries that last longer, car batteries that enable you to drive further, storage that accumulates a lot of energy from wind and s ... read more


ENERGY TECH
Characterizing The Lunar Radiation Environment

Russia rekindles Moon exploration program, intends setting up first human outposts there

Pre-existing mineralogy may survive lunar impacts

Lunar cycle determines hunting behaviour of nocturnal gulls

ENERGY TECH
Accurate pointing by Curiosity

NASA Mars Orbiter Images May Show 1971 Soviet Lander

Opportunity is in position for solar conjunction at 'Cape York' on the rim of Endeavour Crater

NASA spacecraft may have spotted pieces of Soviet spacecraft on Mars

ENERGY TECH
Testing Spacesuits in Antarctica, part 1

Obama's budget would boost science, health

Underwater for outer space

NASA Celebrates Four Decades of Plucky Pioneer 11

ENERGY TECH
Shenzhou's Shadow Crew

Shenzhou 10 sent to launch site

China's Next Women Astronauts

Shenzhou 10 - Next Stop: Jiuquan

ENERGY TECH
Unmanned Russian space freighter leaves space station toward fiery end

Europe sets June 5 for launch of space freighter

Spooky action at a distance aboard the ISS

First data released from the Alpha Magnetic Spectrometer

ENERGY TECH
Ukraine aims to accelerate space industry development

Payload integration is underway for Vega's second mission from the Spaceport

Ecuador to launch first homemade satellite

Arianespace receives the second Vega for launch from French Guiana

ENERGY TECH
Can One Buy the Right to Name a Planet?

Retired Star Found With Planets And Debris Disc

The Great Exoplanet Debate

NASA Selects Explorer Investigations for Formulation

ENERGY TECH
High pressure gold nanocrystal structure revealed

Scientists design new adaptive material inspired by tears

UC Research Demonstrates Why Going Green Is Good Chemistry

Florida Tech professors present 'dark side of dark lightning' at conference




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement