Subscribe free to our newsletters via your
. 24/7 Space News .




ENERGY TECH
Battery and Memory Device in One
by Staff Writers
Julich, Germany (SPX) Apr 28, 2013


Configuration of a resistive storage cell (ReRAM): An electric voltage is built up between the two electrodes so that the storage cells can be regarded as tiny batteries. Filaments formed by deposits during operation may modify the battery's properties. Source: Julich Aachen Research Alliance (JARA).

Resistive memory cells (ReRAM) are regarded as a promising solution for future generations of computer memories. They will dramatically reduce the energy consumption of modern IT systems while significantly increasing their performance. Unlike the building blocks of conventional hard disk drives and memories, these novel memory cells are not purely passive components but must be regarded as tiny batteries.

This has been demonstrated by researchers of Julich Aachen Research Alliance (JARA), whose findings have now been published in the prestigious journal Nature Communications. The new finding radically revises the current theory and opens up possibilities for further applications. The research group has already filed a patent application for their first idea on how to improve data readout with the aid of battery voltage.

Conventional data memory works on the basis of electrons that are moved around and stored. However, even by atomic standards, electrons are extremely small. It is very difficult to control them, for example by means of relatively thick insulator walls, so that information will not be lost over time. This does not only limit storage density, it also costs a great deal of energy.

For this reason, researchers are working feverishly all over the world on nanoelectronic components that make use of ions, i.e. charged atoms, for storing data. Ions are some thousands of times heavier that electrons and are therefore much easier to 'hold down'. In this way, the individual storage elements can almost be reduced to atomic dimensions, which enormously improves the storage density.

In resistive switching memory cells (ReRAMs), ions behave on the nanometre scale in a similar manner to a battery. The cells have two electrodes, for example made of silver and platinum, at which the ions dissolve and then precipitate again. This changes the electrical resistance, which can be exploited for data storage.

Furthermore, the reduction and oxidation processes also have another effect. They generate electric voltage. ReRAM cells are therefore not purely passive systems - they are also active electrochemical components. Consequently, they can be regarded as tiny batteries whose properties provide the key to the correct modelling and development of future data storage.

In complex experiments, the scientists from Forschungszentrum Julich and RWTH Aachen University determined the battery voltage of typical representatives of ReRAM cells and compared them with theoretical values.

This comparison revealed other properties (such as ionic resistance) that were previously neither known nor accessible. "Looking back, the presence of a battery voltage in ReRAMs is self-evident. But during the nine-month review process of the paper now published we had to do a lot of persuading, since the battery voltage in ReRAM cells can have three different basic causes, and the assignment of the correct cause is anything but trivial," says Dr. Ilia Valov, the electrochemist in Prof. Rainer Waser's research group.

The new finding is of central significance, in particular, for the theoretical description of the memory components. To date, ReRAM cells have been described with the aid of the concept of memristors - a portmanteau word composed of "memory" and "resistor". The theoretical concept of memristors can be traced back to Leon Chua in the 1970s.

It was first applied to ReRAM cells by the IT company Hewlett-Packard in 2008. It aims at the permanent storage of information by changing the electrical resistance. The memristor theory leads to an important restriction. It is limited to passive components.

"The demonstrated internal battery voltage of ReRAM elements clearly violates the mathematical construct of the memristor theory. This theory must be expanded to a whole new theory - to properly describe the ReRAM elements," says Dr. Eike Linn, the specialist for circuit concepts in the group of authors. This also places the development of all micro- and nanoelectronic chips on a completely new footing.

"The new findings will help to solve a central puzzle of international ReRAM research," says Prof. Rainer Waser, deputy spokesman of the collaborative research centre SFB 917 'Nanoswitches' established in 2011. In recent years, these puzzling aspects include unexplained long-term drift phenomena or systematic parameter deviations, which had been attributed to fabrication methods.

"In the light of this new knowledge, it is possible to specifically optimize the design of the ReRAM cells, and it may be possible to discover new ways of exploiting the cells' battery voltage for completely new applications, which were previously beyond the reach of technical possibilities," adds Waser, whose group has been collaborating for years with companies such as Intel and Samsung Electronics in the field of ReRAM elements.

I. Valov,E. Linn, S. Tappertzhofen, S. Schmelzer, J. van den Hurk, F. Lentz and R. Waser Nanobatteries in redox-based resistive switches require extension of memristor theory Nature Communications. 23. April 2013 DOI: 10.1038/ncomms2784.

.


Related Links
Julich Aachen Research Alliance
Electronic Materials Research Lab (EMRL)
Collaborative Research Centre SFB 917 Nanoswitches
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
Boeing to Begin Modifying 787s as FAA Approves Battery Improvements
Everett WA (SPX) Apr 23, 2013
Approval of battery system improvements for the 787 Dreamliner by the U.S. Federal Aviation Administration (FAA) clears the way for Boeing and its customers to install the approved modifications and will lead to a return to service and resumption of new production deliveries. "FAA approval clears the way for us and the airlines to begin the process of returning the 787 to flight with conti ... read more


ENERGY TECH
Characterizing The Lunar Radiation Environment

Russia rekindles Moon exploration program, intends setting up first human outposts there

Pre-existing mineralogy may survive lunar impacts

Lunar cycle determines hunting behaviour of nocturnal gulls

ENERGY TECH
Dutch reality show seeks one-way astronauts for Mars

Accurate pointing by Curiosity

NASA Mars Orbiter Images May Show 1971 Soviet Lander

Opportunity is in position for solar conjunction at 'Cape York' on the rim of Endeavour Crater

ENERGY TECH
Google's Brin keeps spotlight on future technologies

Mysterious water on Jupiter came from comet smash

What makes a good astronaut?

NASA urged to preserve funding for planetary science missions

ENERGY TECH
Yuanwang III, VI depart for space-tracking missions

Shenzhou's Shadow Crew

Shenzhou 10 sent to launch site

China's Next Women Astronauts

ENERGY TECH
ISS Communications Test Bed Checks Out; Experiments Begin

Spacewalkers Deploy Plasma Experiment, Install Navigational Aid

The New and Improved ISS Facilities Brochure

Full tank, please For ATV Einstein

ENERGY TECH
Vega's three-satellite payload is integrated and ready for launch

NASA Seeks Innovative Suborbital Flight Technology Proposals

Stephane Israel named Chairman and CEO of Arianespace

Launch pad problem scrubs launch of Antares rocket for NASA

ENERGY TECH
Mysterious Hot Spots Observed In A Cool Red Supergiant

Orbital Selected By NASA for TESS Astrophysics Satellite

Star-and Planet-Forming Regions May Hold Key to Life's Chirality

Kepler Discovers Its Smallest Habitable Zone Planets

ENERGY TECH
Space debris problem now urgent - scientists

Nothing Bugs These NASA Aeronautical Researchers

US eases export rules on aerospace parts

MEADS Low Frequency Sensor Cues Multifunction Fire Control Radar in Test




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement