![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]()
Boston MA (SPX) Sep 15, 2006 It is only a matter of time before astronomers find an Earth-sized planet orbiting a distant star. When they do, the first questions people will ask are: Is it habitable? And even more importantly, is there life present on it already? For clues to the answers, scientists are looking to their home planet, Earth. Astronomers Lisa Kaltenegger of the Harvard-Smithsonian Center for Astrophysics (CfA) and Wesley Traub of NASA's Jet Propulsion Laboratory and CfA, propose using Earth's atmospheric history to understand other planets. "Good planets are hard to find," said Kaltenegger. "Our work provides the signposts astronomers will look for when examining truly Earth-like worlds." Geologic records show that Earth's atmosphere has changed dramatically during the past 4.5 billion years, in part because of life forms developing on our planet. Mapping what gases comprised Earth's atmosphere during its history, Kaltenegger and Traub propose that by looking for similar atmospheric compositions on other worlds, scientists will be able to determine if that planet has life on it, and if so, that life's evolutionary stage. To date, all extrasolar planets have been studied indirectly, for example by monitoring the way a host star wobbles as the planet's gravity tugs it. Only four extrasolar planets have been detected directly, and they are massive Jupiter-sized worlds. The atmosphere of one of these worlds was detected by another CfA scientist, David Charbonneau, using NASA's Spitzer Space Telescope. The next generation of space-based missions such as NASA's Terrestrial Planet Finder (TPF) and ESA's Darwin will be able to directly study nearby Earth-sized worlds. Astronomers particularly want to observe the visible and infrared spectra of distant terrestrial planets to learn about their atmospheres. Particular gases leave signatures in a planet's spectrum, like fingerprints or DNA markers. By spotting those fingerprints, researchers can learn about an atmosphere's composition and even deduce the presence of clouds. Today, Earth's atmosphere consists of about three-fourths nitrogen and one-fourth oxygen, with a small percentage of other gases like carbon dioxide and methane. But four billion years ago, no oxygen was present. Earth's atmosphere has evolved through six distinct epochs, each characterized by a particular mix of gases. Using a computer code developed by Traub and CfA colleague Ken Jucks, Kaltenegger and Traub modeled each of Earth's six epochs to determine what spectral fingerprints would be seen by a distant observer. "By studying Earth's past, we can learn about the present state of other worlds," Traub explained. "If an extrasolar planet is found with a spectrum similar to one of our models, we potentially could characterize that planet's geological state, its habitability, and the degree to which life has evolved on it." To better understand these time periods, or "epochs," and to put them into perspective, one can scale the Earth's 4.5-billion-year history down to one year, attaching dates beginning with January 1 - the date the Earth formed.
EPOCH 0 - February 12
EPOCH 1 - March 17
EPOCH 2 - June 5 "I'm sorry to say the first signs of E.T. probably won't be a radio or TV broadcasts; instead, it could be oxygen from algae," lamented Kaltenegger.
EPOCH 3 - July 16 "The introduction of oxygen was catastrophic to the dominant life on Earth at that time; it poisoned it," Traub said. "But at the same time, it made multicellular life, including human life, possible."
EPOCH 4 - October 13 EPOCH 5 - November 8 Finally, 300 million years ago in Epoch 5, life had moved from the oceans onto land. The Earth's atmosphere had reached its current composition of primarily nitrogen and oxygen. This was the beginning of the Mesozoic period that included the dinosaurs. The scenery looked like Jurassic Park on a Sunday afternoon.
EPOCH 6 - December 31 (11:59:59) As the general consensus builds among scientist that human activity has altered Earth's atmosphere by inputting carbon dioxide as well as gases like Freon, could we identify the spectral fingerprints of those byproducts on other worlds? Although Earth-orbiting satellites and balloon experiments can measure these changes here at home, detecting similar effects on a distant world are beyond even the capabilities of upcoming programs like Terrestrial Planet Finder and Darwin. It will take gigantic flotillas of future space-based infrared telescopes to be able to accomplish those measurements. "As daunting as this challenge sounds," said Kaltenegger, "I do believe in the next few decades we will know whether or not our little blue world is all alone in the Universe or if there are neighbors out there waiting to meet us." Related Links Harvard-Smithsonian Center for Astrophysics Beyond Sol
![]() ![]() Using a network of small, automated telescopes known as HAT, Smithsonian astronomers have discovered a planet unlike any other known world. This new planet, designated HAT-P-1, orbits one member of a pair of distant stars 450 light-years away in the constellation Lacerta. |
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement |