Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
Astronomers Baffled by Discovery of Rare Quasar Quartet
by Staff Writers
Maunakea HI (SPX) May 18, 2015


Image of the region of the space occupied by the rare quasar quartet. The four quasars are indicated by arrows. The quasars are embedded in a giant nebula of cool dense gas visible in the image as a blue haze. The nebula has an extent of one million light-years across, and these objects are so distant that their light has taken nearly 10 billion years to reach telescopes on Earth. This false color image is based on observations with the Keck 10m telescope on the summit of Maunakea in Hawaii. Image courtesy Hennawi and Arrigoni-Battaia, MPIA. For a larger version of this image please go here.

Using the W. M. Keck Observatory in Hawaii, a group of astronomers led by Joseph Hennawi of the Max Planck Institute for Astronomy have discovered the first quadruple quasar: four rare active black holes situated in close proximity to one another. The quartet resides in one of the most massive structures ever discovered in the distant universe, and is surrounded by a giant nebula of cool dense gas.

Because the discovery comes with one-in-ten-million odds, perhaps cosmologists need to rethink their models of quasar evolution and the formation of the most massive cosmic structures. The results are being published in the May 15, 2015 edition of the journal Science. Hitting the jackpot is one thing, but if you hit the jackpot four times in a row you might wonder if the odds were somehow stacked in your favor.

Quasars constitute a brief phase of galaxy evolution, powered by the in-fall of matter onto a supermassive black hole at the center of a galaxy. During this phase, they are the most luminous objects in the Universe, shining hundreds of times brighter than their host galaxies, which themselves contain hundreds of billions of stars.

But these hyper-luminous episodes last only a tiny fraction of a galaxy's lifetime, which is why astronomers need to be very lucky to catch any given galaxy in the act. As a result, quasars are exceedingly rare on the sky, and are typically separated by hundreds of millions of light years from one another. The researchers estimate that the odds of discovering a quadruple quasar by chance is one in ten million. How on Earth did they get so lucky?

Clues come from peculiar properties of the quartet's environment. The four quasars are surrounded by a giant nebula of cool dense hydrogen gas, which emits light because it is irradiated by the intense glare of the quasars. In addition, both the quartet and the surrounding nebula reside in a rare corner of the universe with a surprisingly large amount of matter.

"There are several hundred times more galaxies in this region than you would expect to see at these distances," said J. Xavier Prochaska, professor at the University of California Santa Cruz and the principal investigator of the Keck Observatory observations.

Given the exceptionally large number of galaxies, this system resembles the massive agglomerations of galaxies, known as galaxy clusters, that astronomers observe in the present-day universe. But because the light from this cosmic metropolis has been travelling for 10 billion years before reaching Earth, the images show the region as it was 10 billion years ago, less than 4 billion years after the big bang. It is thus an example of a progenitor or ancestor of a present-day galaxy cluster, or proto-cluster for short.

Piecing all of these anomalies together, the researchers tried to understand what appears to be their incredible stroke of luck. "If you discover something which, according to current scientific wisdom should be extremely improbable, you can come to one of two conclusions: either you just got very lucky, or you need to modify your theory," Hennawi said.

The researchers speculate that some physical process might make quasar activity much more likely in specific environments. One possibility is that quasar episodes are triggered when galaxies collide or merge, because these violent interactions efficiently funnel gas onto the central black hole. Such encounters are much more likely to occur in a dense proto-cluster filled with galaxies, just as one is more likely to encounter traffic when driving through a big city.

"The giant emission nebula is an important piece of the puzzle since it signifies a tremendous amount of dense cool gas," said Fabrizio Arrigoni-Battaia, a PhD student at the Max Planck Institute for Astronomy who was involved in the discovery.

Supermassive black holes can only shine as quasars if there is gas for them to swallow, and an environment that is gas rich could provide favorable conditions for fueling quasars.

On the other hand, given the current understanding of how massive structures in the universe form, the presence of the giant nebula in the proto-cluster is totally unexpected.

"Our current models of cosmic structure formation based on supercomputer simulations predict that massive objects in the early universe should be filled with rarefied gas that is about ten million degrees, whereas this giant nebula requires gas thousands of times denser and colder," said Sebastiano Cantalupo, currently at ETH Zurich, that led the imaging observations a the Keck Observatory during his previous research appointment at UCSC.

"It is really amazing that this discovery was made the same night of the Slug Nebula while we were hunting for giant Lyman alpha nebulae illuminated by quasars - my first night at Keck Observatory and definitely the most exciting observing night I have ever had!"

"Extremely rare events have the power to overturn long-standing theories" Hennawi said.

As such, the discovery of the first quadruple quasar may force cosmologists to rethink their models of quasar evolution and the formation of the most massive structures in the universe.

The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain.

The W. M. Keck Observatory operates the largest, most scientifically productive telescopes on Earth. The two, 10-meter optical/infrared telescopes near the summit of Mauna Kea on the Island of Hawaii feature a suite of advanced instruments including imagers, multi-object spectrographs, high-resolution spectrographs, integral-field spectrographs and world-leading laser guide star adaptive optics systems.

The Low Resolution Imaging Spectrometer (LRIS) is a very versatile visible-wavelength imaging and spectroscopy instrument commissioned in 1993 and operating at the Cassegrain focus of Keck I. Since it has been commissioned it has seen two major upgrades to further enhance its capabilities: addition of a second, blue arm optimized for shorter wavelengths of light; and the installation of detectors that are much more sensitive at the longest (red) wavelengths.

Each arm is optimized for the wavelengths it covers. This large range of wavelength coverage, combined with the instrument's high sensitivity, allows the study of everything from comets (which have interesting features in the ultraviolet part of the spectrum), to the blue light from star formation, to the red light of very distant objects. LRIS also records the spectra of up to 50 objects simultaneously, especially useful for studies of clusters of galaxies in the most distant reaches, and earliest times, of the universe.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Keck Observatory in Hawaii
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Water was plentiful in the early universe
Tel Aviv, Israel (SPX) May 18, 2015
Astronomers have long held that water - two hydrogen atoms and an oxygen atom - was a relative latecomer to the universe. They believed that any element heavier than helium had to have been formed in the cores of stars and not by the Big Bang itself. Since the earliest stars would have taken some time to form, mature, and die, it was presumed that it took billions of years for oxygen atoms to di ... read more


STELLAR CHEMISTRY
NASA's LRO Moves Closer to the Lunar Surface

European Space Agency Director Wants to Set Up a Moon Base

Russia Invites China to Join in Creating Lunar Station

Japan to land first unmanned spacecraft on moon in 2018

STELLAR CHEMISTRY
Technique for finding signs of life on the Red Planet

Mystery Methane on Mars: The Saga Continues

Auroras on Mars

Quick Detour by NASA Mars Rover Checks Ancient Valley

STELLAR CHEMISTRY
Russia races to replace Sarah Brightman as space tourist

Photonic Laser Thruster Propels Simulated Spacecraft

Potentially Revolutionary Mission Heading for 2016 Launch

High-tech Analysis of Orion Heat Shield Underway

STELLAR CHEMISTRY
3D printer making Chinese space suit parts

Xinhua Insight: How China joins space club?

Chinese scientists mull power station in space

China completes second test on new carrier rocket's power system

STELLAR CHEMISTRY
ISS Partners Adjust Spacecraft Schedule

Samantha's longer stay on ISS

Italian astronaut shows how to use restroom on ISS online

Russia delays return of ISS crew members after supply ship failure

STELLAR CHEMISTRY
Report: SpaceX Falcon 9 rocket certified to fly NASA missions

DirecTV-15 and SKY Mexico-1 integrated for Ariane 5 heavy-lift mission

Russia to Launch US Comms Satellite Into Space

Fifth Vega takes shape for its flight with Sentinel-2A

STELLAR CHEMISTRY
Weather forecasts for planets beyond our solar system

Astrophysicists offer proof that famous image shows forming planets

Astronomers detect drastic atmospheric change in super Earth

New exoplanet too big for its star

STELLAR CHEMISTRY
Researchers develop artificial membranes with programmable surfaces

Tiny silicone spheres come out of the mist

OPALS Boosts Space-to-Ground Optical Communications Research

Patria Space unit now part of RUAG




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.