Subscribe free to our newsletters via your
. 24/7 Space News .




IRON AND ICE
Asteroids Ahoy! Jupiter Scar Likely From Rocky Body
by Staff Writers
Pasadena CA (JPL) Jan 27, 2011


These images show eight different looks at the aftermath of a body -- probably an asteroid -- hitting Jupiter on July 19, 2009. Amateur astronomer Anthony Wesley was the first to capture an image of the impact, with a visible-light camera attached to his telescope in Australia. A NASA Hubble Space Telescope image was obtained in visible light. Infrared images were obtained by NASA's Infrared Telescope Facility and the Gemini North Telescope, both atop Mauna Kea, Hawaii, and the European Southern Observatory's Very Large Telescope in Chile. The images were taken between July 19 and 26, 2009. Image Credit: NASA/JPL-Caltech/IRTF/STScI/ESO/Gemini Observatory/AURA/A. Wesley

A hurtling asteroid about the size of the Titanic caused the scar that appeared in Jupiter's atmosphere on July 19, 2009, according to two papers published recently in the journal Icarus.

Data from three infrared telescopes enabled scientists to observe the warm atmospheric temperatures and unique chemical conditions associated with the impact debris. By piecing together signatures of the gases and dark debris produced by the impact shockwaves, an international team of scientists was able to deduce that the object was more likely a rocky asteroid than an icy comet.

Among the teams were those led by Glenn Orton, an astronomer at NASA's Jet Propulsion Laboratory, Pasadena, Calif., and Leigh Fletcher, researcher at Oxford University, U.K., who started the work while he was a postdoctoral fellow at JPL.

"Both the fact that the impact itself happened at all and the implication that it may well have been an asteroid rather than a comet shows us that the outer solar system is a complex, violent and dynamic place, and that many surprises may be out there waiting for us," said Orton.

"There is still a lot to sort out in the outer solar system."

The new conclusion is also consistent with evidence from results from NASA's Hubble Space Telescope indicating the impact debris in 2009 was heavier or denser than debris from comet Shoemaker-Levy 9, the last known object to hurl itself into Jupiter's atmosphere in 1994.

Before this collision, scientists had thought that the only objects that hit Jupiter were icy comets whose unstable orbits took them close enough to Jupiter to be sucked in by the giant planet's gravitational attraction.

Those comets are known as Jupiter-family comets. Scientists thought Jupiter had already cleared most other objects, such as asteroids, from its sphere of influence. Besides Shoemaker-Levy, scientists know of only two other impacts in the summer of 2010, which lit up Jupiter's atmosphere.

The July 19, 2009 object likely hit Jupiter between 9 a.m. and 11 a.m. UTC. Amateur astronomer Anthony Wesley from Australia was the first to notice the scar on Jupiter, which appeared as a dark spot in visible wavelengths.

The scar appeared at mid-southern latitudes. Wesley tipped off Orton and colleagues, who immediately used existing observing time at NASA's Infrared Telescope Facility in Mauna Kea, Hawaii, the following night and proposed observing time on a host of other ground-based observatories, including the Gemini North Observatory in Hawaii, the Gemini South Telescope in Chile, and the European Southern Observatory's Very Large Telescope in Chile. Data were acquired at regular intervals during the week following the 2009 collision.

The data showed that the impact had warmed Jupiter's lower stratosphere by as much as 3 to 4 Kelvin at about 42 kilometers above its cloudtops. Although 3 to 4 Kelvin does not sound like a lot, it is a significant deposition of energy because it is spread over such an enormous area.

Plunging through Jupiter's atmosphere, the object created a channel of super-heated atmospheric gases and debris. An explosion deep below the clouds - probably releasing at least around 200 trillion trillion ergs of energy, or more than 5 gigatons of TNT -- then launched debris material back along the channel, above the cloud tops, to splash back down into the atmosphere, creating the aerosol particulates and warm temperatures observed in the infrared. The blowback dredged up ammonia gas and other gases from a lower part of the atmosphere known as the troposphere into a higher part of the atmosphere known as the stratosphere.

"Comparisons between the 2009 images and the Shoemaker-Levy 9 results are beginning to show intriguing differences between the kinds of objects that hit Jupiter," Fletcher said.

"The dark debris, the heated atmosphere and upwelling of ammonia were similar for this impact and Shoemaker-Levy, but the debris plume in this case didn't reach such high altitudes, didn't heat the high stratosphere, and contained signatures for hydrocarbons, silicates and silicas that weren't seen before. The presence of hydrocarbons, and the absence of carbon monoxide, provide strong evidence for a water-depleted impactor in 2009."

The detection of silica in this mixture of Jovian atmospheric gases, processed bits from the impactor and byproducts of high-energy chemical reactions was significant because abundant silica could only be produced in the impact itself, by a strong rocky body capable of penetrating very deeply into the Jovian atmosphere before exploding, but not by a much weaker comet nucleus.

Assuming that the impactor had a rock-like density of around 2.5 grams per cubic centimeter (160 pounds per cubic foot), scientists calculated a likely diameter of 200 to 500 meters (700 to 1,600 feet).

Scientists computed the set of possible orbits that would bring an object into Jupiter in the right range of times and at the right locations. Then they searched the catalog of known asteroids and comets to find the kinds of objects in these orbits. An object named 2005 TS100 - which is probably an asteroid but could be an extinct comet - was one of the closest matches.

Although this object was not the actual impactor, it has a very chaotic orbit and made several very close approaches to Jupiter in computer models, demonstrating that an asteroid could have hurtled into Jupiter.

"We weren't expecting to find that an asteroid was the likely culprit in this impact, but we've now learned Jupiter is getting hit by a diversity of objects," said Paul Chodas, a scientist at NASA's Near-Earth Object Program Office at JPL.

"Asteroid impacts on Jupiter were thought to be quite rare compared to impacts from the so-called 'Jupiter-family comets,' but now it seems there may be a significant population of asteroids in this category."

Scientists are still working to figure out what that frequency at Jupiter is, but asteroids of this size hit Earth about once every 100,000 years.

The next steps in this investigation will be to use detailed simulations of the impact to refine the size and properties of the impactor, and to continue to use imaging at infrared, as well as visible wavelengths, to search for debris from future impacts of this size or smaller.

.


Related Links
Oxford University
Asteroid and Comet Mission News, Science and Technology






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








IRON AND ICE
More Asteroids Could Have Made Life's Ingredients
Greenbelt MD (SPX) Jan 20, 2011
A wider range of asteroids were capable of creating the kind of amino acids used by life on Earth, according to new NASA research. Amino acids are used to build proteins, which are used by life to make structures like hair and nails, and to speed up or regulate chemical reactions. Amino acids come in two varieties that are mirror images of each other, like your hands. Life on Earth u ... read more


IRON AND ICE
NASA's New Lander Prototype Skates Through Integration And Testing

Draper Commits One Million Dollars To Next Giant Leap's Moon Lander

Lunar water may have come from comets - scientists

Moon Has Earth-Like Core

IRON AND ICE
New images of martian moon released

DLR Researchers Simulate The Martian Atmosphere

The Southern Hemisphere Of Phobos, Up Close

Chinese Astronaut Performs Well In Mars-500 Project

IRON AND ICE
Mumbai's washermen fear rise of the machines

Solar Sail Stunner

Looking Back At Uranus

Google looks to its next decade

IRON AND ICE
Slow progress in U.S.-China space efforts

China Builds Theme Park In Spaceport

Tiangong Space Station Plans Progessing

China-Made Satellite Keeps Remote Areas In Venezuela Connected

IRON AND ICE
Japanese cargo craft reaches space station

Space Station supply mission readied

Russia's Spaceship Debris Slump Into Pacific Ocean

Russian cosmonauts complete space walk

IRON AND ICE
Russia Plans To Build Carrier Rocket For Mars Missions

First Delta IV Heavy Launches From Vandenberg

Beaming Rockets Into Space

Arianespace Announces Eutelsat Contract

IRON AND ICE
Inclined Orbits Prevail

Inclined Orbits Prevail In Exoplanetary Systems

Planet Affects A Star's Spin

Kepler Mission Discovers Its First Rocky Planet

IRON AND ICE
Canada upgrades air defense radars

Kindle Singles debuts pithy digital works

News Corp. to launch iPad newspaper Wednesday

When Artemis Talks, Johannes Kepler Listens




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement