. | . |
Asteroid Split in Two and, Years Later, Developed Tails by Staff Writers Granada, Spain (SPX) Mar 03, 2017
Asteroids on the main belt, situated between Mars and Jupiter, move around the Sun in quasi circular orbits, so they do not undergo the temperature changes which, in comets, produce the characteristic tails. Nevertheless, some twenty cases have been documented of asteroids which, for various reasons, increase their glow and unfurl a tail of dust. Among the latter stands P/2016 J1, the youngest known "asteroid pair." Asteroid pairs are relatively frequent objects in the main asteroid belt. They are created when an original asteroid, either because of an excess of rotational speed or because of an impact with a foreign body, breaks in two. This can also happen as the result of the destabilization of binary systems. Asteroids that form pairs are not gravitationally linked to each other. They drift away from each other progressively, but they plot similar orbits around the Sun. Reconstructing the orbits of asteroid pairs, astronomers can determine the moment of maximum proximity, and thereby establish the asteroid's date of rupture. An international group of researchers has used the Great Telescope of the Canary Islands (GTC) and the Canada-France-Hawaii Telescope (CFHT) to study P/2016 J1, an asteroid whose duplicity was discovered in 2016. "The results derived from the evolution of the orbit show that the asteroid fragmented approximately six years ago, which makes it the youngest known asteroid pair in the solar system to date," says Fernando Moreno, researcher at the Institute of Astrophysics of Andalusia (IAA-CSIC), in charge of the project. P/2016 J1 presents another important peculiarity, which makes it very unusual. "Both fragments are activated, i.e., they display dust structures similar to comets. This is the first time we observe an asteroid pair with simultaneous activity," says Fernando Moreno (IAA-CSIC). Analyses revealed that the asteroids were activated near their perihelion - the point on the orbit nearest to de Sun - between the end of 2015 and the beginning of 2016, and that they remained for a period of between six and nine months. The span of time between the moment of fragmentation and their bout of activity implies that the two events are not related. In fact, the data suggests that the fragmentation also happened near the perihelion but during the previous orbit (it takes P/2016 J1 5.65 years to spin around the Sun). "In all likelihood, the dust emission is due to the sublimation of ice that was left exposed after the fragmentation," says Moreno (IAA-CSIC). This research project, together with the ever more frequent findings of some activity or other on asteroids, indicates that the solar system is more active in that region than was previously believed.
Research Report: "The Splitting of Double-Component Active Asteroid P/2016 J1 (Pan-STARRS)," Fernando Moreno et al., 2017, to appear in Astrophysical Journal Letters
Berkeley, Calif. (UPI) Feb 27, 2017 As 2013's Chelyabinsk meteor proved, an asteroid doesn't have to make direct contact with Earth's surface to do considerable damage. The Chelyabinsk meteor, which became a fireball brighter than the sun, a superbolide, as it entered Earth's atmosphere above Russia, exploded 19 miles above Russia's Chelyabinsk Oblast region with the force of 500,000 tons of TNT. The shockwave broke thous ... read more Related Links Institute Of Astrophysics Of Andalusia Asteroid and Comet Mission News, Science and Technology
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |