![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Washington DC (SPX) Feb 18, 2016
Carbon capture and storage could be used to mitigate greenhouse gas emissions and thus ameliorate their impact on climate change. The focus of this technology is on the large-scale reduction of carbon emissions from fossil-fuelled power plants. Research published in the International Journal of Decision Support Systems investigates the pros and cons, assesses the risks associated with carbon capture and provides a new framework for assessing the necessary technology. John Michael Humphries Choptiany formerly of Dalhousie University in Nova Scotia and now at the Food and Agriculture Organization of the United Nations in Rome, Italy, together with colleagues at Dalhousie, Alberta Innovates - Technology Futures (AITF), and G BACH Enterprises Incorporated, explain how they have adopted information from the environmental, social, economic and engineering fields to create their assessment framework, which incorporates utility curves, criterion weights, thresholds, decision trees, Monte Carlo simulation, critical events and sensitivity analysis. "Climate change is one of the most serious threats facing humankind," the team reports, "Carbon capture and storage (CCS) includes a suite of technologies and processes with the goal of mitigating climate change by capturing and storing anthropogenic CO2 from various emitters, including fossil-fuelled power plants, in geological reservoirs." The Intergovernmental Panel on Climate Change (IPCC) has recognized that CCS should be one component of our response to carbon emissions and climate change, but there are many different approaches that could be taken, all with various risks. The team obtained inputs from carbon capture experts that allowed them to use their framework to test drive three approaches to carbon capture in a flexible manner. Their case study provided validation for the framework and showed that it might also be used to assess the benefits of other climate change amelioration technologies. Choptiany, J.M.H., Pelot, R., Brydie, J. and Gunter, W. (2015) 'An MCDA risk assessment framework for carbon capture and storage', Int. J. Decision Support Systems, Vol. 1, No. 4, pp.349-390.
Related Links Inderscience Publishers Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |