Subscribe free to our newsletters via your
. 24/7 Space News .




CARBON WORLDS
Artificial lung to remove carbon dioxide -- from smokestacks
by Staff Writers
Indianapolis IN (SPX) Sep 14, 2013


File image.

The amazingly efficient lungs of birds and the swim bladders of fish have become the inspiration for a new filtering system to remove carbon dioxide from electric power station smokestacks before the main greenhouse gas can billow into the atmosphere and contribute to global climate change.

A report on the new technology, more efficient than some alternatives, is on the agenda today at the 246th National Meeting and Exposition of the American Chemical Society (ACS), the world's largest scientific society. The meeting, which features almost 7,000 presentations on new advances in science and other topics, continues here through Thursday in the Indiana Convention Center and downtown hotels.

With climate change now a major concern, many power plants rely on CO2 capture and sequestration methods to reduce their greenhouse gas emissions. Speaking at a symposium, "CO2 Separation and Capture," Aaron P. Esser-Kahn, Ph.D., said he envisions new CO2-capture units with arrays of tubes made from porous membranes fitted side-by-side, much like blood vessels in a natural lung.

Once fabricated to be highly efficient and scalable to various sizes by repeating units, these units can then be "plugged" into power plants and vehicles, not unlike catalytic converters, he explained.

To capture the most CO2, the Esser-Kahn group from the University of California, Irvine, first had to figure out the best pattern to pack two sets of different-sized tubes -- one for waste emissions and the other a CO2-absorbing liquid -- into the unit. "The goal is to cram as much surface area into the smallest space possible," said Esser-Kahn.

They studied the way blood vessels are packed in the avian lung and the fish swim bladder. Birds need to exchange CO2 for oxygen rapidly, as they burn a lot of energy in flight, while fish need to control the amount of gas in their swim bladder effectively to move up and down in the water.

"We're trying to learn from nature," said Esser-Kahn, adding that the avian lung and fish swim bladder are biologically well-suited systems for exchanging gases.

But the blood vessels in the avian lung and fish swim bladder are packed in different patterns. The avian lung consists of a hexagonal pattern where three large tubes form the vertices of a triangle and a small tube sits in the gap, while the fish swim bladder has a squarer pattern where a large and small tube alternate between vertices of a square.

It turned out that this tube-packing challenge is a well-studied mathematical problem with nine unique solutions, or patterns, Esser-Kahn said.

The team used computer simulations to predict how efficient gas exchange would be for each pattern. Four were predicted to be highly efficient, including the avian lung's hexagonal pattern and the fish swim bladder's squarer pattern.

However, the most efficient pattern was actually one not found in nature: the double-squarer pattern, similar to the squarer one in the fish swim bladder, but with two small tubes alternating with a large tube. Esser-Kahn's team then synthesized miniature units up to a centimeter long and confirmed experimentally that the double-squarer pattern was the most efficient, outperforming the avian lung and fish swim bladder by almost 50 percent.

Now, scientists can conduct further research to improve CO2-capture units' efficiencies by adjusting the sizes of the tubes, thicknesses of the tube walls and membrane materials that make up the tube walls.

"Biological systems spent an incredible amount of time and effort moving towards optimization," said Esser-Kahn. "What we have is the first step in a longer process."

.


Related Links
American Chemical Society
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CARBON WORLDS
Stanford Scientists Use DNA to Assemble a Transistor From Graphene
Stanford CA (SPX) Sep 11, 2013
DNA is the blueprint for life. Could it also become the template for making a new generation of computer chips based not on silicon, but on an experimental material known as graphene? That's the theory behind a process that Stanford chemical engineering professor Zhenan Bao reveals in Nature Communications. Bao and her co-authors, former post-doctoral fellows Anatoliy Sokolov and Fung Ling ... read more


CARBON WORLDS
Scientists say water on moon may have originated on Earth

Moon landing mission to use "secret weapons"

NASA launches spacecraft to study Moon atmosphere

NASA-Funded Scientists Detect Water on Moon's Surface that Hints at Water Below

CARBON WORLDS
Upgrade to Mars rovers could aid discovery on more distant worlds

Investigating 'Coal Island' Rock Outcrop

Terramechanics research aims to keep Mars rovers rolling

New technology could make for smarter planet rovers

CARBON WORLDS
Elite Group of Young Scientists Embark on DARPA Research Efforts

From Elvis to E.T.? The Voyagers' extraordinary tale

Astronauts prepare for deep space -- by going deep underground

NASA's Voyager first spacecraft to exit solar system

CARBON WORLDS
China civilian technology satellites put into use

China to launch lunar lander by end of year: media

China launches three experimental satellites

Medical quarantine over for Shenzhou-10 astronauts

CARBON WORLDS
ISS Releases a White Stork and Awaits a Swan

Three astronauts back on Earth from ISS: mission control

ISS Crew Completes Spacewalk Preps

Russian cosmonaut set for space station mission resigns

CARBON WORLDS
Russian space official denies report of problem in Soyuz return

Lockheed Martin Atlas V To Launch Morelos-3 ComSat

Japan sets new date for satellite rocket launch

Arianespace delivers! EUTELSAT 25B/Es'hail 1 and GSAT-7 are orbited by Ariane 5

CARBON WORLDS
Coldest Brown Dwarfs Blur Lines between Stars and Planets

NASA-funded Program Helps Amateur Astronomers Detect Alien Worlds

Observations strongly suggest distant super-Earth has water atmosphere

Waking up to a new year

CARBON WORLDS
First laser-like X-ray light from a solid

Space's 'Ferrari' set to fall to Earth

Chinese-built Bolivian satellite tested in space simulator

Indiana Jones meets George Jetson




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement