. | . |
Artificial agent designs quantum experiments by Staff Writers Innsbruck, Austria (SPX) Feb 02, 2018
We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by people. However, this could change soon. In the group of Innsbruck physicist Hans Briegel, researchers broach the question to what extent machines can carry out research autonomously. For this purpose, they use the projective simulation model for artificial intelligence, developed by the group, to enable a machine to learn and act creatively. The memory of this autonomous machine stores many individual fragments of experience, which are networked together. The machine builds up and adapts its memories while learning from both successful and unsuccessful experience. Now, the scientists from Innsbruck have teamed up Viennese colleagues in the group of Anton Zeilinger, who previously demonstrated the usefulness of automated procedures in the design of quantum experiments with a search algorithm called Melvin. Some of these computer-inspired experiments have already been performed in the lab of Zeilinger. Together, the physicists have now understood that quantum experiments are an ideal environment to test the applicability of AI to research. Therefore, they used the projective simulation model to investigate the potential of artificial learning agents in this test-bed. In a paper published in the Proceedings of the National Academy of Sciences, the researchers now present their first results.
Optimized experiments designed by an AI-agent "Reinforcement learning is what distinguishes our model from the previously studied automated search, which is governed by unbiased random search," says Alexey Melnikov from the Department of Theoretical Physics at the University of Innsbruck. "The artificial agent performs tens of thousands of experiments on the virtual laboratory table. When we analyzed the memory of the machine, we discovered that certain structures have developed," explains his colleague Hendrik Poulsen Nautrup. Some of these structures are already known to physicists as useful tools from modern quantum optical laboratories. Others are completely new and could, in the future, be tested in the lab. "Reinforcement learning is what allows us to find, optimize and identify a huge amount of potentially interesting solutions," says Alexey Melnikov. "And sometimes it also provides answers to questions we didn't even ask."
Creative support in the laboratory
Method uses DNA, nanoparticles and lithography to make optically active structures Chicago IL (SPX) Feb 02, 2018 Northwestern University researchers have developed a first-of-its-kind technique for creating entirely new classes of optical materials and devices that could lead to light bending and cloaking devices - news to make the ears of Star Trek's Spock perk up. Using DNA as a key tool, the interdisciplinary team took gold nanoparticles of different sizes and shapes and arranged them in two and three dimensions to form optically active superlattices. Structures with specific configurations could be progr ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |