|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
|
![]() |
![]() by Staff Writers Lemont IL (SPX) Jun 16, 2015
For engine designers in the digital age, time is money. And that time is measured in computer cycles. Researchers at the U.S. Department of Energy's Argonne National Laboratory are partnering with Convergent Science, Inc. (CSI), to speed up a key piece of modeling and simulation software to ensure those cycles are used as effectively as possible, reducing product development time and resulting in better engines and savings for consumers. The scale of the speed gains were recently demonstrated when researchers ran the largest engine simulation to date on more than 4,000 computer cores. The research is part of Argonne's Virtual Engine Research Institute and Fuels Initiative (VERIFI), which is working with CSI to optimize the company's CONVERGE code, a CFD software program widely used in industry to conduct modeling and simulation for engine design. While the effort has been ongoing for more than two years, it has recently moved into a code optimization phase that is showing dramatic gains. "Our latest round of optimization has yielded a three-fold increase in speed, which correlates directly into faster design of better engines," said Janardhan Kodavasal, a postdoctoral appointee who led the optimization work along with with Marta Garcia Martinez, an assistant computational scientist, and Kevin Harms, a senior software developer at the Argonne Leadership Computing Facility. "The unique High Performance Computing resources we have available at Argonne allowed us to make great progress in a short amount of time." Engine designers use modeling and simulation software to test new designs and tweak existing plans in a virtual space, drastically reducing time to market. When the project first started, simulations ran on systems with 50 cores. VERIFI quickly scaled up those numbers to 1,000 cores, and recently conducted an engine simulation on 4,096 cores. The VERIFI work is focused on a key aspect of engine design - the extraordinarily complicated fluid dynamics and combustion characteristics that are at the heart of all internal combustion engines. Using high performance computing and X-ray radiography data from Argonne's Advance Photon Source, VERIFI was able to gain unprecedented insight into the performance of fuel injectors in engines. Once that modeling was completed, it was incorporated into CONVERGE and is currently being used by industry partners in engine design. The latest phase involved optimizing the CONVERGE code for greater efficiency. One of the key breakthroughs came in the area of load balancing. The varying levels of complexity in the chemistry of ignition meant that some cores weren't actively engaged in computation, while other cores handling more complex parts of the simulation were working overtime. By balancing the computational load evenly over all the cores, great gains in efficiency were achieved. Another important development came when the team tweaked CONVERGE to use parallel read/write processes, which allow simultaneous file writing by processors, rather than having to wait for one action to complete before taking another. This resulted in a speed up of more than 100 times in writing large data files generated by the software. In the end, the advances mean that engine designers can try out more designs in shorter times, yielding more efficient, reliable engines with less cost. "Working with the people at Argonne allowed us to implement high-performance computing improvements in our software much faster than we could do alone. The Mira computer system at the ALCF is a powerful tool, but it was Argonne's experienced staff that allowed us to really maximize the computing resources available to us and make great progress in a very short amount of time," said Keith Richards, co-founder and vice president of Convergent Science.
Related Links Argonne National Laboratory Powering The World in the 21st Century at Energy-Daily.com
|
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |