. 24/7 Space News .
ICE WORLD
Arctic found to play unexpectedly large role in removing nitrogen
by Staff Writers
Port Aransas TX (SPX) Oct 31, 2016


A sensitive area in the Arctic Ocean is playing an unexpectedly large role in removing extra nitrogen from the ocean. Nitrogen is critical for living things, but too much of it - as is the case now, because of fertilizers and other human activity - can be harmful to life. In the first study of its kind in the Arctic, scientists found that the bacteria that remove nitrogen here are responsible for about 5 percent of the world's nitrogen removal in oceans; earlier estimates had been that the figure was closer to 1 percent. Image courtesy University of Texas at Austin. For a larger version of this image please go here.

Areas of the Arctic play a larger role than previously thought in the global nitrogen cycle - the process responsible for keeping a critical element necessary for life flowing between the atmosphere, the land and oceans. The finding is reported in a new study of the continental shelf in the Arctic Ocean published Wednesday in the journal Nature Communications.

In the new study, marine chemists and biologists from The University of Texas at Austin discovered that seabed microbes remove substantial quantities of nitrogen from the Arctic Ocean. Although the Arctic accounts for only a little more than 1 percent of the world's continental shelves (where most nitrogen is removed), this region accounts for about 5 percent of the global ocean nitrogen removal, data researchers collected for the study show.

Scientists think that, in the past, the oceans maintained a reliable balance between nitrogen sources and nitrogen removal. This global nitrogen budget indicates that overall ocean nitrogen levels are higher now than ever before due to human activity, such as fertilizer run-off and sewage into the oceans. This perturbation throws the budget out of balance. All living things need nitrogen for survival, but excessive nitrogen can harm marine and terrestrial ecosystems.

For example, excess nitrogen in the ocean can fuel growth of algae blooms, including toxic blooms that are harmful to marine life. Symptoms of nitrogen pollution include "dead zones," fish kills, shellfish poisoning and loss of coastal habitats such as seagrass meadows and coral reefs. Natural bacteria in the ocean remove some of this extra nitrogen in the ocean by converting it to inert nitrogen gas in a process called "denitrification."

"Microbial nitrogen removal occurs across the globe, and we were interested in how much of an impact it was making in the Arctic," said Amber Hardison, an assistant professor of marine science at The University of Texas at Austin who was an author on the paper.

Hardison and her colleagues collaborated in the first-ever study in the Arctic region to measure several different processes that can remove nitrogen. The researchers conducted the study in the Chukchi Sea, a part of the Arctic Ocean adjacent to the Pacific Ocean and Alaska.

The area is of interest not only to scientists but also to oil industry officials due to the potential for large reserves of oil and gas. The Obama administration has removed the area of Hanna Shoal in the northeast Chukchi Sea from consideration for future oil and gas leasing, and the new research adds to the environmental case for protecting the region.

"The role of this region is critically important to understand as humans put more nitrogen into the ocean via fertilizers, sewage and other sources," Hardison said.

"The Arctic is also undergoing dramatic changes linked to climate change, including a rapid decline in sea ice. As sea ice shrinks, it disrupts the natural functioning of the ecosystem, including potentially limiting the vital nitrogen removal process."

The scientists also discovered that the animals living on and in the seafloor play a significant role in facilitating nitrogen removal. Animals such as worms and clams make tubes and burrows in the seabed, creating a perfect space for bacteria to engage in denitrification.

"This study was a great example of the interplay of biology and chemistry and is the first time it was shown in the Arctic," Hardison said. She warns, however, that depleted sea ice will alter the system in unknown ways, including the animals living on and in the seafloor and their facilitation of bacterial nitrogen removal.

The http://dx.doi.org/10.1038/ncomms13145 other authors, all at UT Austin at the time of the research, were corresponding author Nathan McTigue, a former postdoctoral fellow in Hardison's lab now with the National Oceanic and Atmospheric Administration; Ken Dunton, a professor of marine science; and Wayne Gardner, now a professor emeritus.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Texas at Austin
Beyond the Ice Age






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ICE WORLD
Canada seeking to cooperate with Russia in the Arctic
Ottawa (AFP) Oct 25, 2016
Despite tensions over conflicts in Syria and Ukraine, Russia and the West have maintained a strong working relationship in the Arctic and Canada's new Liberal government is looking to further bolster that cooperation. Prime Minister Justin Trudeau has continued to press Moscow over its annexation of Crimea and its support for Syrian President Bashar al-Assad's regime in a long-running civil ... read more


ICE WORLD
No Balloons for JPL's Birthday, Just a 'Satelloon'

Urine may be the X factor to exploring deep space

US, Russian, Japanese astronauts return from ISS

Team braves wildlife, dust and darkness to find safe home for abandoned records

ICE WORLD
SpaceX zeroes in on helium containers for rocket explosion

Proven engine packs big, in-space punch for Space Launch System

Boosting Europe's all-electric satellites

Guiding Supply Ship to the International Space Station

ICE WORLD
Detailed images of Schiaparelli and its descent hardware on Mars

Cursed not, Difficult yes

Did it crash or land? Search on for Europe's Mars craft

Rover Conducting Science Investigations at 'Spirit Mount'

ICE WORLD
US, China hold second meeting on advancing space cooperation

China to enhance space capabilities with launch of Shenzhou-11

Ambitious space satellite projects set for liftoff

China's permanent station plans ride on mission

ICE WORLD
Dream coming true for ISS-bound rookie French astronaut

Airbus DS contracts with Intelsat General for European Defence Communications

Final exams prepare Thomas Pesquet for launch

Airbus DS in partnership with Orbital ATK to build EUTELSAT 5 West B

ICE WORLD
With new model, buildings may 'sense' internal damage

3-D-printed permanent magnets outperform conventional versions, conserve rare materials

New tech uses electricity to track water, ID potential problems in concrete

Nickel-78 is a doubly magic isotope supercomputer confirms

ICE WORLD
How Planets Like Jupiter Form

Giant Rings Around Exoplanet Turn in the Wrong Direction

Preferentially Earth-sized Planets with Lots of Water

Potential new hunting ground for exoplanets discovered

ICE WORLD
Last Bits of 2015 Pluto Flyby Data Received on Earth

Uranus may have two undiscovered moons

Possible Clouds on Pluto, Next Target is Reddish

Curious tilt of the Sun traced to undiscovered planet









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.