|
. | . |
|
by Staff Writers Goteborg, Sweden (SPX) Dec 19, 2013
It causes brain diseases like Alzheimer's, Parkinson's and Creutzfeldt-Jakob's disease. It is also hard and rigid as steel. Now research at Chalmers University of Technology shows that the amyloid protein carries unique characteristics that may lead to the development of new composite materials for nano processors and data storage of tomorrow and even make objects invisible. Piotr Hanczyc, PhD student at the department of Chemical and Biological Engineering, shows in an article in Nature Photonics, that the amyloid, a very dense aggregate of protein that causes brain diseases like Alzheimer's and Parkinson's, carries unique characteristics. Unlike well-functioning protein the amyloid reacts upon multi photon laser irradiation. This laser may in the future possibly be used for detection of amyloids inside a human brain. This discovery is in itself a breakthrough. But you can also create these aggregates in an artificial way in a laboratory and in combination with other materials create unique characteristics, Piotr Hanczyc says. The amyloid aggregates are as hard and rigid as steel. The difference is that steel is much heavier and has defined material properties whereas amyloids can be tuned for desired purpose. By attaching a material's molecules to the dense amyloid its characteristics change. This has been known for more than ten years and is already used by scientists. What hasn't been known is that the amyloids react to multi-photon irradiation and this opens up new possibilities to also change the nature of the material attached to the amyloids, Piotr Hanczyc says. The amyloids are shaped like discs densely piled upon each other. When a material gets merged with these discs its molecules end up so densely and regularly that they can communicate and exchange information. This means totally new possibilities to change a material's characteristics. Multi-photon tests on materials tied to amyloids are yet to be performed, but Piotr sees an opportunity for cooperation with Chalmers material science researchers interested for example in solar cell technology. And though it may still be science fiction, he also considers that one day scientists may use the material properties of amyloid fibrils in the research of invisible metamaterials. An object's ability to reflect light could be altered so that what's behind it gets reflected instead of the object itself, in principle changing the index of light refraction, kind of like when light hits the surface of water, Piotr Hanczyc says.
Related Links Chalmers University of Technology Nano Technology News From SpaceMart.com Computer Chip Architecture, Technology and Manufacture
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement |