Subscribe free to our newsletters via your
. 24/7 Space News .




NANO TECH
All systems go at the biofactory
by Staff Writers
Munich, Germany (SPX) Oct 03, 2012


File image: atomic force microscope (AFM).

In order to assemble novel biomolecular machines, individual protein molecules must be installed at their site of operation with nanometer precision. LMU researchers have now found a way to do just that. Green light on protein assembly!

The finely honed tip of the atomic force microscope (AFM) allows one to pick up single biomolecules and deposit them elsewhere with nanometer accuracy. The technique is referred to as Single-Molecule Cut and Paste (SMC and P), and was developed by the research group led by LMU physicist Professor Hermann Gaub. In its initial form, it was only applicable to DNA molecules.

However, the molecular machines responsible for many of the biochemical processes in cells consist of proteins, and the controlled assembly of such devices is one of the major goals of nanotechnology.

A practical method for doing so would not only provide novel insights into the workings of living cells, but would also furnish a way to develop, construct and utilize designer nanomachines.

In a major step towards this goal, the LMU team has modified the method to allow them to take proteins from a storage site and place them at defined locations within a construction area with nanometer precision.

"In liquid medium at room temperature, the "weather conditions" at the nanoscale are comparable to those in a hurricane," says Mathias Strackharn, first author of the new study. Hence, the molecules being manipulated must be firmly attached to the tip of the AFM and held securely in place in the construction area.

Traffic signals prove the efficiency The forces that tether the proteins during transport and assembly must also be weak enough not to cause damage, and must be tightly controlled. To achieve these two goals, the researchers used a combination of antibodies, DNA-binding "zinc-finger" proteins, and DNA anchors.

"We demonstrated the method's feasibility by bringing hundreds of fluorescent GFP molecules together to form a little green man, like the traffic-light figure that signals to pedestrians to cross the road, but only some micrometers high," Strackharn explains.

With this technique, functional aspects of complex protein machines - such as how combinations of different enzymes interact, and how close together they must be to perform coupled reactions - can be tested directly.

A further goal is to develop artificial multimolecular assemblies modeled on natural "cellulosomes", which could be used to convert plant biomass into biofuels. Strackharn points out the implications: "If we can efficiently build mimics of these 'enzymatic assembly lines' by bringing individual proteins together, we could perhaps make a significant contribution to the exploitation of sustainable energy sources." (JACS September 2012).

Abstract

.


Related Links
LMU
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








NANO TECH
Electrons confined inside nano-pyramids
Dresden, Germany (SPX) Oct 03, 2012
Quantum dots are nanostructures of semiconducting materials that behave a lot like single atoms and are very easy to produce. Given their special properties, researchers see huge potential for quantum dots in technological applications. Before this can happen, however, we need a better understanding of how the electrons "trapped" inside them behave. Dresden physicists have recently observe ... read more


NANO TECH
China has no timetable for manned moon landing

Senior scientist discusses China's lunar orbiter challenges

NASA sees 'gateway' for space missions

Protection for Moon, Mars astronauts eyed

NANO TECH
Near Possible Target for Use of Arm Instruments

Rock Grinding Action

Learning to live on Mars

Mars Rover Opportunity Working at 'Matijevic Hill'

NANO TECH
SciTechTalk: NASA's planetary playbook

Bryan Campen joins XCOR as Director of Media and Public Relations

B612 Wins Funding Support From Prominent Business Leadersy

Cavenauts return to Earth

NANO TECH
China Spacesat gets 18-million-USD gov't support

Tiangong Orbit Change Signals Likely Date for Shenzhou 10

China Focus: Timeline for China's space research revealed

China eyes next lunar landing as US scales back

NANO TECH
Space freighter burns up in suicide dive

Space freighter undocking set for Friday

Russia to send all-novice crew to ISS

ATV undocking postponed

NANO TECH
H-IIB Launch Service Privatization

Ariane rocket launches two telecom satellites

Ariane 5 maintains Arianespace's track record of success with the launch of ASTRA 2F and GSAT-10

California Governor Signs the Spaceflight Liability and Immunity Act

NANO TECH
The Magnetic Wakes of Pulsar Planets

Stagnant Interiors Suppress Chances of Life on Super-Earths

Meteors Might Add Methane to Exoplanet Atmospheres

Two 'hot Jupiters' found in star cluster: NASA

NANO TECH
HP stock sinks with slow turnaround

Malaysia hearing on Australia rare earths plant postponed

Ancient stinging nettles reveal Bronze Age trade connections

Probing the mysteries of cracks and stresses




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement