![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Marseille, France (SPX) Jun 01, 2018
Marking a world first, researchers from the Etienne Jules Marey Institute of Movement Sciences (CNRS / Aix-Marseille Universite) have drawn inspiration from birds to design an aerial robot capable of altering its profile during flight. To reduce its wingspan and navigate through tight spaces, it can reorient its arms, which are equipped with propellers that let it fly like a helicopter. The scientists' work is the subject of an article published in Soft Robotics (May 30, 2018). It paves the way for a new generation of large robots that can move through narrow passages, making them ideal for exploration as well as search and rescue missions. Birds and winged insects have the remarkable ability to maneuver quickly during flight to clear obstacles. Such extreme agility is necessary to navigate through cramped spaces and crowded environments, like forests. There are already miniature flying machines that can roll, pitch, or otherwise alter their flight attitude to pass through small apertures. But birds illustrate another strategy that is just as effective for flying through bottlenecks. They can quickly fold their wings during high-speed flight, reducing their imposing span, to easily negotiate the challenging paths before them.[1] Deployment of aerial robots in constricted and cluttered areas for search and rescue, exploratory, or mapping operations will become more and more commonplace. They will need to be able to circumnavigate many obstacles and travel through fairly tight passages to complete their missions. Accordingly, researchers from the Etienne Jules Marey Institute of Movement Sciences (CNRS / Aix-Marseille Universite) have designed a flying robot that can reduce its wingspan in flight to move through a small opening, without intensive steering that would consume too much energy and require a robotic platform featuring a low-inertia (light and small robot).[2] Dubbed Quad-Morphing, the new robot has two rotating arms each equipped with two propellers for helicopter-like flight. A system of elastic and rigid wires allows the robot to change the orientation of its arms in flight so that they are either perpendicular or parallel to its central axis. It adopts the parallel position, halving its wingspan, to traverse a narrow stretch and then switches back to perpendicular position to stabilize its flight, all while flying at a speed of 9 km/h, which is pretty fast for an aerial robot. At present, it is the precision of the Quad-Morphing autopilot mechanism that determines the robot's agility. The autopilot activates arm reorientation when the robot nears a tight passage, as determined by a 3D localization system used at the institute.[3] The researchers have also equipped the robot with a miniature camera that can take 120 pictures per second. In the future, this will allow Quad-Morphing to independently assess the size of the gap before it and fold its wings accordingly if necessary. Flight testing with the new camera will begin this month. [1] Such impressive behavior has been observed among budgerigars and goshawks flying at speeds above 14 km/h. [2] Flying robots have typical transversal speed of 4-5 km/h in indoor conditions. [3] The studies were conducted at the AVM flying machine arena, built with the financial support of the French Equipex Robotex program. The arena has 17 cameras for recording movement.
![]() ![]() Lockheed Martin Stalker XE Upgraded with New VTOL Launch and Landing Capability Palmdale CA (SPX) May 23, 2018 Lockheed Martin's Stalker eXtended Endurance (XE) unmanned aerial system (UAS) has been upgraded with a vertical take-off and landing (VTOL) capability. This new option gives users greater mission flexibility allowing them to operate the system in more austere locations. The new VTOL option features a reduced logistics footprint and expands how and where the Stalker XE UAS may operate. Other launch alternatives include a pneumatic rail or a standard bungee launch system. "By offering three u ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |