Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Advancing graphene for post-silicon computer logic
by Staff Writers
Riverside CA (SPX) Sep 05, 2013


This is the scanning electron microscopy image of graphene device used in the study. The scale bar is one micrometer. The UCR logo next to it is implemented with etched graphene. Credit: University of California, Riverside.

A team of researchers from the University of California, Riverside's Bourns College of Engineering have solved a problem that previously presented a serious hurdle for the use of graphene in electronic devices.

Scanning electron microscopy image of graphene device used in the study. The scale bar is one micrometer. The UCR logo next to it is implemented with etched graphene.

Graphene is a single-atom thick carbon crystal with unique properties beneficial for electronics including extremely high electron mobility and phonon thermal conductivity. However, graphene does not have an energy band gap, which is a specific property of semiconductor materials that separate electrons from holes and allows a transistor implemented with a given material to be completely switched off.

A transistor implemented with graphene will be very fast but will suffer from leakage currents and power dissipation while in the off state because of the absence of the energy band gap. Efforts to induce a band-gap in graphene via quantum confinement or surface functionalization have not resulted in a breakthrough. That left scientists wondering whether graphene applications in electronic circuits for information processing were feasible.

The UC Riverside team - Alexander Balandin and Roger Lake, both electrical engineering professors, Alexander Khitun, an adjunct professor of electrical engineering, and Guanxiong Liu and Sonia Ahsan, both of whom earned their Ph.Ds from UC Riverside while working on this research - has eliminated that doubt.

"Most researchers have tried to change graphene to make it more like conventional semiconductors for applications in logic circuits," Balandin said. "This usually results in degradation of graphene properties. For example, attempts to induce an energy band gap commonly result in decreasing electron mobility while still not leading to sufficiently large band gap."

"We decided to take alternative approach," Balandin said. "Instead of trying to change graphene, we changed the way the information is processed in the circuits."

The UCR team demonstrated that the negative differential resistance experimentally observed in graphene field-effect transistors allows for construction of viable non-Boolean computational architectures with the gap-less graphene.

The negative differential resistance - observed under certain biasing schemes - is an intrinsic property of graphene resulting from its symmetric band structure. The advanced version of the paper with UCR findings can be accessed at http://arxiv.org/abs/1308.2931.

Modern digital logic, which is used in computers and cell phones, is based on Boolean algebra implemented in semiconductor switch-based circuits. It uses zeroes and ones for encoding and processing the information. However, the Boolean logic is not the only way to process information. The UC Riverside team proposed to use specific current-voltage characteristics of graphene for constructing the non-Boolean logic architecture, which utilizes the principles of the non-linear networks.

The graphene transistors for this study were built and tested by Liu at Balandin's Nano-Device Laboratory at UC Riverside. The physical processes leading to unusual electrical characteristics were simulated using atomistic models by Ahsan, who was working under Lake. Khitun provided expertise on non-Boolean logic architectures.

The atomistic modeling conducted in Lake's group shows that the negative differential resistance appears not only in microscopic-size graphene devices but also at the nanometer-scale, which would allow for fabrication of extremely small and low power circuits.

The proposed approach for graphene circuits presents a conceptual change in graphene research and indicates an alternative route for graphene's applications in information processing according to the UC Riverside team.

.


Related Links
University of California - Riverside
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
New superheavy elements can be uniquely identified
Mainz, Germany (SPX) Sep 05, 2013
An international team of researchers presents fresh evidence that confirms the existence of the superheavy chemical element 115. The experiment was conducted at the GSI Helmholtz Center for Heavy Ion Research, an accelerator laboratory located in Darmstadt. Under the lead of physicists from Lund University in Sweden, the group, which included researchers from Johannes Gutenberg University ... read more


TECH SPACE
Scientists say water on moon may have originated on Earth

Moon landing mission to use "secret weapons"

NASA launches spacecraft to study Moon atmosphere

NASA-Funded Scientists Detect Water on Moon's Surface that Hints at Water Below

TECH SPACE
SwRI study suggests debris flows on frozen arctic sand dunes are similar to dark dune spot-seepage flows on Mars

Space Cadets line up for one-way Mars trip

NASA Evaluates Four Candidate Sites for 2016 Mars Mission

Examining Rocks Around Boulder Field

TECH SPACE
SpaceShipTwo commercial space liner breaks sound barrier in test

Andreas Mogensen set for Soyuz mission to ISS in 2015

NASA awards nearly $1.5B in support contracts

NSBRI and NASA Reduce Space Radiation Risks by Soliciting for Center of Space Radiation Research

TECH SPACE
China civilian technology satellites put into use

China to launch lunar lander by end of year: media

China launches three experimental satellites

Medical quarantine over for Shenzhou-10 astronauts

TECH SPACE
ISS Crew Completes Spacewalk Preps

Russian cosmonaut set for space station mission resigns

Russian cosmonauts to start searching for bacterium corroding ISS body

Cosmonauts Complete Spacewalk, Unfold Russian Flag in Space

TECH SPACE
Japan sets new date for satellite rocket launch

Arianespace delivers! EUTELSAT 25B/Es'hail 1 and GSAT-7 are orbited by Ariane 5

Arianespace to "reach for the stars" with its Soyuz launch of Europe's Gaia space surveyor spacecraft

Ariane 5 build-up is completed for Arianespace upcoming flight with EUTELSAT

TECH SPACE
NASA-funded Program Helps Amateur Astronomers Detect Alien Worlds

Observations strongly suggest distant super-Earth has water atmosphere

Waking up to a new year

Study: Planets might be 'born free' without a parent star

TECH SPACE
New computational approaches speed up the exploration of the universe

Advancing graphene for post-silicon computer logic

Simple compact laser system could detect presence of explosives

Northrop Grumman Completes Demonstration of 3D Expeditionary Long-Range Radar (3DELRR) System




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement