. 24/7 Space News .
CHIP TECH
Advances make reduced graphene oxide electronics feasible
by Staff Writers
Raleigh NC (SPX) Mar 31, 2017


File image.

Researchers at North Carolina State University have developed a technique for converting positively charged (p-type) reduced graphene oxide (rGO) into negatively charged (n-type) rGO, creating a layered material that can be used to develop rGO-based transistors for use in electronic devices.

"Graphene is extremely conductive, but is not a semiconductor; graphene oxide has a bandgap like a semiconductor, but does not conduct well at all - so we created rGO," says Jay Narayan, the John C. Fan Distinguished Chair Professor of Materials Science and Engineering at NC State and corresponding author of a paper describing the work. "But rGO is p-type, and we needed to find a way to make n-type rGO. And now we have it for next-generation, two-dimensional electronic devices."

Specifically, Narayan and Anagh Bhaumik - a Ph.D. student in his lab - demonstrated two things in this study. First, they were able to integrate rGO onto sapphire and silicon wafers - across the entire wafer.

Second, the researchers used high-powered laser pulses to disrupt chemical groups at regular intervals across the wafer. This disruption moved electrons from one group to another, effectively converting p-type rGO to n-type rGO.

The entire process is done at room temperature and pressure using high-power nanosecond laser pulses, and is completed in less than one-fifth of a microsecond. The laser radiation annealing provides a high degree of spatial and depth control for creating the n-type regions needed to create p-n junction-based two-dimensional electronic devices.

The end result is a wafer with a layer of n-type rGO on the surface and a layer of p-type rGO underneath.

This is critical, because the p-n junction, where the two types meet, is what makes the material useful for transistor applications.

The paper, "Conversion of p to n-type Reduced Graphene Oxide by Laser Annealing at Room Temperature and Pressure," is published in the Journal of Applied Physics. Bhaumik is lead author.

CHIP TECH
A robust, 2-ion quantum logic gate that operates in a microsecond is designed
Basque Country, Spain (SPX) Mar 30, 2017
The UPV/EHU-University of the Basque Country is conducting this work alongside the Boulder group, led by the Nobel laureate David Wineland. The theory group led by Gonzalo Muga of the UPV/EHU's Department of Physical Chemistry, has teamed up with the experimental group of the National Institute of Standards and Technology in Boulder, United States, led by David Wineland, the 2012 Nobel Physics L ... read more

Related Links
North Carolina State University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
US astronaut John Glenn is buried with military honors

Russia, Europe, US Should Work Together on Space Exploration - German Agency

The long legacy of space-farming leading us to Mars

US, Russia Have Opportunities for Expanding Space Cooperation Despite Tensions

CHIP TECH
US Hardware Production Begins for Money-Saving Next-Generation Rockets

'Fuzzy' fibers can take rockets' heat

Flight Tests of Super-Heavy Angara-A5V Carrier Rocket May Start in 2027

Kremlin Believes Russia Can Compete With Private Firms Like SpaceX in Space

CHIP TECH
New MAVEN findings reveal how Mars' atmosphere was lost to space

Potential Mars Airplane Resumes Flight

Prolific Mars Orbiter Completes 50,000 Orbits

Final two ExoMars landing sites chosen

CHIP TECH
Yuanwang fleet to carry out 19 space tracking tasks in 2017

China Develops Spaceship Capable of Moon Landing

Long March-7 Y2 ready for launch of China's first cargo spacecraft

China Seeks Space Rockets Launched from Airplanes

CHIP TECH
Ukraine Plans to Launch Telecom Satellite in Fourth Quarter of 2017

Russia Offering Brazil to Develop Gonets-Like Satellite System - Manufacturer

Intelsat-OneWeb Merger: Enhanced Connections for Government Users

Vietnam set to produce satellites by 2022

CHIP TECH
Despite EU fines, Greece struggling to promote recycling

Granites could solve riddle of pinpointing metals crucial for low carbon tech

Seaweed: From superfood to superconductor

More annual shareholder meetings go virtual in US

CHIP TECH
Exoplanet mission gets ticket to ride

Inside Arctic ice lies a frozen rainforest of microorganisms

Astronomers confirm atmosphere around the super-Earth

TRAPPIST-1 flares threaten possibility of habitability on surrounding exoplanets

CHIP TECH
Neptune's movement from the inner to the outer solar system was smooth and calm

Four unknown objects being investigated in Planet X

New Horizons Halfway from Pluto to Next Flyby Target

ANU leads public search for Planet X









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.