. | . |
Advances make reduced graphene oxide electronics feasible by Staff Writers Raleigh NC (SPX) Mar 31, 2017
Researchers at North Carolina State University have developed a technique for converting positively charged (p-type) reduced graphene oxide (rGO) into negatively charged (n-type) rGO, creating a layered material that can be used to develop rGO-based transistors for use in electronic devices. "Graphene is extremely conductive, but is not a semiconductor; graphene oxide has a bandgap like a semiconductor, but does not conduct well at all - so we created rGO," says Jay Narayan, the John C. Fan Distinguished Chair Professor of Materials Science and Engineering at NC State and corresponding author of a paper describing the work. "But rGO is p-type, and we needed to find a way to make n-type rGO. And now we have it for next-generation, two-dimensional electronic devices." Specifically, Narayan and Anagh Bhaumik - a Ph.D. student in his lab - demonstrated two things in this study. First, they were able to integrate rGO onto sapphire and silicon wafers - across the entire wafer. Second, the researchers used high-powered laser pulses to disrupt chemical groups at regular intervals across the wafer. This disruption moved electrons from one group to another, effectively converting p-type rGO to n-type rGO. The entire process is done at room temperature and pressure using high-power nanosecond laser pulses, and is completed in less than one-fifth of a microsecond. The laser radiation annealing provides a high degree of spatial and depth control for creating the n-type regions needed to create p-n junction-based two-dimensional electronic devices. The end result is a wafer with a layer of n-type rGO on the surface and a layer of p-type rGO underneath. This is critical, because the p-n junction, where the two types meet, is what makes the material useful for transistor applications. The paper, "Conversion of p to n-type Reduced Graphene Oxide by Laser Annealing at Room Temperature and Pressure," is published in the Journal of Applied Physics. Bhaumik is lead author.
Basque Country, Spain (SPX) Mar 30, 2017 The UPV/EHU-University of the Basque Country is conducting this work alongside the Boulder group, led by the Nobel laureate David Wineland. The theory group led by Gonzalo Muga of the UPV/EHU's Department of Physical Chemistry, has teamed up with the experimental group of the National Institute of Standards and Technology in Boulder, United States, led by David Wineland, the 2012 Nobel Physics L ... read more Related Links North Carolina State University Computer Chip Architecture, Technology and Manufacture Nano Technology News From SpaceMart.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |