. 24/7 Space News .
CHIP TECH
Advance may make quantum computing more practical
by Staff Writers
Boston MA (SPX) Apr 13, 2016


File image.

Quantum computers are largely hypothetical devices that could perform some calculations much more rapidly than conventional computers can. They exploit a property called superposition, which describes a quantum particle's counterintuitive ability to, in some sense, inhabit more than one physical state at the same time.

But superposition is fragile, and finding ways to preserve it is one of the chief obstacles to developing large, general-purpose quantum computers. In Nature, MIT researchers describe a new approach to preserving superposition in a class of quantum devices built from synthetic diamonds. The work could ultimately prove an important step toward reliable quantum computers.

In most engineering fields, the best way to maintain the stability of a physical system is feedback control. You make a measurement - the current trajectory of an airplane, or the temperature of an engine - and on that basis produce a control signal that nudges the system back toward its desired state.

The problem with using this technique to stabilize a quantum system is that measurement destroys superposition. So quantum-computing researchers have traditionally had to do without feedback.

"Typically, what people do is to use what's called open-loop control," says Paola Cappellaro, the Esther and Harold Edgerton Associate Professor of Nuclear Science and Engineering at MIT and senior author on the new paper. "You decide a priori how to control your system and then apply your controller and hope for the best - that you knew enough about your system that the control you applied will do what you thought it should. Feedback should be more robust, because it lets you adapt to what's going wrong."

In the Nature paper, Cappellaro and her former PhD student Masashi Hirose, who graduated last year and is now with McKinsey and Company in Tokyo, describe a feedback-control system for maintaining quantum superposition that requires no measurement. "Instead of having a classical controller to implement the feedback, we now use a quantum controller," Cappellaro explains. "Because the controller is quantum, I don't need to do a measurement to know what's going on."

Vacant expression
Cappellaro and Hirose's system uses a so-called nitrogen-vacancy center in diamond. A pure diamond consists of carbon atoms arranged in a regular latticework structure. If a carbon nucleus is missing from the lattice where one would be expected, that's a vacancy. If a nitrogen atom takes the place of a carbon atom in the lattice, and it happens to be adjacent to a vacancy, that's a nitrogen-vacancy (NV) center.

Associated with every NV center is a group of electrons from the adjacent atoms, which, like all electrons, have a property called spin that describes their magnetic orientation. When subjected to a strong magnetic field - from, say, a permanent magnet positioned above the diamond - an NV center's electronic spin can be up, down, or a quantum superposition of the two. It can thus represent a quantum bit, or "qubit," which differs from an ordinary computer bit in its ability to take on not just the values 1 or 0, but both at the same time.

NV centers have several advantages over other candidate qubits. They're an intrinsic feature of a physical structure, so they dispense with the complex hardware for trapping ions or atoms that other approaches require. And NV centers are natural light emitters, which makes it relatively easy to read information from them. Indeed, the light particles emitted by an NV center may themselves be in superposition, so they provide a way to move quantum information around.

Local control
Like electrons, atomic nuclei have spin, and Cappellaro and Hirose use the spin state of the nitrogen nucleus to control the NV center's electronic spin. First, a dose of microwaves puts the electronic spin into superposition. Then a burst of radio-frequency radiation puts the nitrogen nucleus into a specified spin state.

A second, lower-power dose of microwaves "entangles" the spins of the nitrogen nucleus and the NV center, so that they become dependent on each other. At this point, the NV qubit could, together with other qubits, be enlisted to perform a computation. But in their experiments, Cappellaro and Hirose were evaluating a single qubit, so they could test only the most rudimentary computational operation: the not gate, which flips a bit's value.

Because the spins of the nitrogen nucleus and the NV center are entangled, if anything goes wrong during the computation, it will be reflected in the spin of the nitrogen nucleus.

After the computation is performed, a third dose of microwaves - whose polarization is rotated relative to that of the second - disentangles the nucleus and the NV center. The researchers then subject the system to a final sequence of microwave exposures. Those exposures are calibrated, however, so that their effect on the NV center depends on the state of the nitrogen nucleus. If an error crept in during the computation, the microwaves will correct it; if not, they'll leave the NV center's state unaltered.

In experiments, the researchers found that, with their feedback-control system, an NV-center quantum bit would stay in superposition about 1,000 times as long as it would without it.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Massachusetts Institute of Technology
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CHIP TECH
Cooling chips with the flip of a switch
Washington DC (SPX) Apr 11, 2016
Turn on an electric field, and a standard electrocaloric material will eject heat to its surroundings as its internal dipoles reorder themselves. Do the same thing, and a negative electrocaloric material will absorb heat, cooling the environment, thanks to the blend of ferroelectric polymers that make up each. While these materials have been investigated as a method of on-demand microclima ... read more


CHIP TECH
Lunar lava tubes could help pave way for human colony

The Moon thought to play a major role in maintaining Earth's magnetic field

Moon Mission: A Blueprint for the Red Planet

The Lunar Race That Isn't

CHIP TECH
First joint EU-Russian ExoMars mission to reach Mars orbit Oct 16

Help keep heat on Mars Express through data mining

Ancient Mars bombardment likely enhanced life-supporting habitat

Opportunity's Devilish View from on High

CHIP TECH
NASA begins testing of revolutionary e-sail technology

Bigelow and ULA team up for commercialization of low earth orbit

NASA invests in 2D spacecraft, reprogrammable microorganisms

US-based cruise liner eyes China market with dedicated liner

CHIP TECH
Lessons learned from Tiangong 1

China launches SJ-10 retrievable space science probe

Has Tiangong 1 gone rogue

China's 1st space lab Tiangong-1 ends data service

CHIP TECH
NASA to test first expandable habitat on ISS

Dragon and Cygnus To Meet For First Time In Space

Russian cargo ship docks successfully with space station

Russia launches cargo ship to space station

CHIP TECH
SpaceX lands rocket on ocean platform for first time

SpaceX cargo arrives at crowded space station

Orbital ATK awarded major sounding rocket contract by NASA

Orbital ATK receives NASA order for rockets

CHIP TECH
Cooked planets shrink due to radiation

More accurately measuring distances between planetary nebulae and Earth

New tool refines exoplanet search

Stars strip away atmospheres of nearby super-Earths

CHIP TECH
Radical solution could avoid depletion of natural resources

Breaking metamaterial symmetry with reflected light

Changing the color of single photons in a diamond quantum memory

'Self-healing' plastic could mean better bandages, tougher phone cases









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.