![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Montreal, Canada (SPX) Oct 31, 2019
Engineers from the Military Studies Center at Far Eastern Federal University (MSC FEFU) developed a brand-new concrete with improved impact endurance and up to 40% made of waste: rice husk cinder, limestone crushing waste, and siliceous sand. The new concrete is 6-9 times more crackle resistant than the types produced under GOST standards. The related article was published in Inorganic Materials: Applied Research. The new concrete is suitable for the construction of military and civil defense structures, load-carrying structures of nuclear power plants, or for buildings in the Arctic. The endurance of the new type of concrete grows with the increase of impact affecting it. A concrete slab exhibits the so-called 'rubber effect': it contracts and becomes springy, but doesn't crack. According to the engineers, the construction absorbs impact due to its dynamic viscosity. This effect is caused by the reinforcement of concrete, in this case adding metal or touchstone fibers to it. Impact-proof concrete can resist not only shell hits, but also tsunami waves. Moreover, it has seismic stability. During the pouring the concrete self-seals, which means it can be used to create complex structures including underground constructions. "We've balanced the components with the accuracy of 0.5%. It was important for us that the concrete holds up until the first crack for as long as possible, because after a concrete structure cracks its deterioration is just a matter of time. Today the whole world is working on counter-terrorist security facilities that would defend other structures from a shell hit or an plane crush. "We've approached this issue from our own angle and developed an impact-proof material. On the next stage of our work we want to create radiation-resistant concrete", said Lieutenant-Colonel Roman Fediuk, a Professor at the Military Studies Center at Far Eastern Federal University, and the winner of the 13th All-Russian Competition "Engineer of the Year 2018". According to him, a technological scheme for the manufacture of the new concrete has already been developed, and negotiations about its implementation are on. The scheme would not require any extensive investments or modernization of facilities. The manufacture of the impact-proof concrete can be even more cost-effective than that of GOST-based types as it contains less cement that is replaced by waste products. MSC FEFU has a separate scientific school working on the development of composite materials for special facilities, as well as civil construction. The work of the engineers is based on the principle of naturalness: they want their concrete to be as stable as natural stone. This principle is promoted by a branch of science called geonics or geomimetics. The groundwork of this field was laid by Professor Valery Lesovik from Shukhov Belgorod State Technological University, a corresponding member of the Russian Academy of Architecture and Construction Sciences. Earlier this year FEFU engineers together with their colleagues from Kazan State University of Architecture and Engineering presented a new type of concrete with increased initial strength that would allow to speed the concrete pouring process up 3-4 times. This type of concrete doesn't crack or leak, is resistant to low temperatures, and may be used for building in the Far East and in the conditions of the Extreme North.
![]() ![]() How can space chart the future of a warming Arctic Circle? Los Angeles CA (SPX) Oct 23, 2019 he portion of the Earth above the Arctic circle is experiencing the effects of a warming climate even faster than the rest of the planet, and the summer Arctic Ocean could be ice free as early as 2030. This rapid change will spur increased demand for space-based capabilities like fast and ubiquitous communications among residents of the Arctic, as well as improved means to accurately navigate the altered region and observe the Arctic's changing conditions. A new report by The Aerospace Corporation ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |