Subscribe free to our newsletters via your
. 24/7 Space News .




EARLY EARTH
A tiny grain helps reveal the history of a rock
by Staff Writers
Gothenburg, Germany (SPX) Mar 27, 2013


"We can identify the rock from which the rutile originates, even if we only have a tiny grain of rutile," says researcher Thomas Zack, University of Gothenburg. Credit: Fred Kruijen

Rutile is used in ceramics and paints, but is particularly useful for finding out about the history of a rock. Where mineral deposits are found, rutile is often also present. The new methods therefore bring opportunities for strategies to find other mineral deposits, such as gold.

Until now, rutile has been a relatively unknown mineral, despite not being rare. For example, rutile can be found on most sandy beaches around the world, including in Sweden.

"It's incredible to see how little attention was paid to rutile until around five years ago," says geologist and researcher Thomas Zack, from the University of Gothenburg's Department of Earth Sciences, who has devoted much of his scientific career to studying the mineral.

Now, geologists can identify rock types containing rutile and follow the changes in temperature and pressure that they have been exposed to throughout its history, even if rutile is barely visible to the naked eye. Previously, researchers had to investigate considerably more rutile-bearing samples in order to carry out analyses.

"But now we can identify the rock from which the rutile originates, even if we only have a tiny grain of rutile," adds Thomas.

The new method is called "Laser Ablation ICP-MS", and produces results much faster than previous methods.

"In analytical terms, this is one of the most important analytical instruments at the Department of Earth Sciences here in Gothenburg," concludes Thomas Zack.

.


Related Links
University of Gothenburg
Explore The Early Earth at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








EARLY EARTH
How can basin rocks recorded formation of Dabie orogen
Beijing, China (SPX) Mar 26, 2013
Deep subduction of continental crust and rapid exhumation of ultrahigh-pressure metamorphic rocks, and its mechanism have been one of the most important issues of the world's attention in the Dabie orogen. Professor LIU Shaofeng from State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (Beijing) and his co-author set out to tackle this problem. ... read more


EARLY EARTH
NASA's LRO Sees GRAIL's Explosive Farewell

Amazon's Bezos recovers Apollo 11 engines

Leaping Lunar Dust

Lunar Orbiter Image Recovery Project Seeks Public Support To Retrieve Apollo Era Moon Images

EARLY EARTH
Opportunity Heads to Matijevic Hill

Curiosity Resumes Science Investigations

Digging for hidden treasure on Mars

Sun in the Way Will Affect Mars Missions in April

EARLY EARTH
Miners shoot for the stars in tech race

Space Innovation Center Will Help Govt Agencies Launch Future Space Missions

The Future of Exploration Starts With 3-D Printing

Lockheed Martin to Continue Providing Life Sciences Support To NASA

EARLY EARTH
China's Next Women Astronauts

Shenzhou 10 - Next Stop: Jiuquan

China's fourth space launch center to be in use in two years

China to launch new manned spacecraft

EARLY EARTH
Russia may recycle space station modules

New Space Station Crew Members to Launch and Dock the Same Day

ESA seeks innovators for orbiting laboratory

New ISS crew prepares for launch

EARLY EARTH
When quality counts: Arianespace reaffirms its North American market presence

SpaceX capsule returns after ISS resupply mission

SpaceX Dragon Spacecraft Carrying NASA Cargo Ready for Return to Earth

Dragon capsule to spend extra day in space

EARLY EARTH
The Great Exoplanet Debate

Astronomers Detect Water in Atmosphere of Distant Planet

Distant planetary system is a super-sized solar system

Water signature in distant planet shows clues to its formation

EARLY EARTH
DARPA Envisions the Future of Machine Learning

Removing orbital debris with less risk

New 'BioShock' game takes aim at American taboos

Japan finds rich rare earth deposits on seabed: study




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement