![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Washington DC (SPX) Dec 07, 2015
If quantum computers existed, they would revolutionize computing as we know it. Based on fundamental properties of matter, the potential power of these theoretical workhorses would solve problems in a new way, cracking extremely complex spy codes and precisely modeling chemical systems in a snap. This week in ACS Central Science, researchers create cleverly designed molecules to get one step closer to this goal. Traditional computers rely on transistors that occupy one of two states - that's what those archetypal zeroes and ones refer to, and each digit is a "bit." Quantum computing would use three states, improving its information storage capacity exponentially. Whereas a small app like "Angry Birds" takes up about 40,000 standard bits, a computer made with just 1,000 quantum bits, or "qubits," could easily and quickly break modern encryption schemes or more precisely model how a pharmaceutical drug candidate would perform in a person. The biggest challenge of quantum computing, however, is making the qubit. Some of the most promising qubits today use electrons, specifically their "spin" state. Spin can have two states, just like a bit, but also a combination of both to form a third state, called "superposition." But very few molecules stay in the superposition state long enough to measure, which makes them difficult to use in computing. One reason is that the interaction of spins on most nuclei can interfere with the electronic ones. To get closer to a real, functional qubit, Danna Freedman and colleagues turned to metal complexes, where most of those problematic nuclear spins were eliminated. Freedman and colleagues synthesized vanadium complexes with arms made of carbon and sulfur. As long as the system was kept cold, these molecules kept superposition longer than any metal complexes previously reported. They also kept that state for just as long as other bulk materials currently under consideration. These new molecules show that under the right conditions, inorganic complexes can function as viable qubits. In addition, the complexes may prove to be superior to other potential materials because their defined chemical structure could more easily allow the organized design of functional devices. To get a little meta: it's possible that one day computers made of just a handful of small molecules will be used to make predictions about other molecules. ACS Central Science paper
Related Links American Chemical Society Computer Chip Architecture, Technology and Manufacture Nano Technology News From SpaceMart.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |