. | . |
A new-structure magnetic memory device developed by Staff Writers Sendai, Japan (SPX) Mar 25, 2016
The research group of Professor Hideo Ohno and Associate Professor Shunsuke Fukami of Tohoku University has developed a new-structure magnetic memory device utilizing spin-orbit- torque-induced magnetization switching. For these two decades, much effort has been devoted to the development of magnetic random access memories (MRAMs), which store information as the magnetization direction of a magnet. Since the magnetization can, be in general, be reversed at high speed unlimitedly, the MRAMs are regarded as a promising replacement for currently-used semiconductor-based working memories such as static random access memories (SRAMs) and dynamic random access memories (DRAMs), which are now facing several serious issues. The central issue of the MRAM development is how to achieve magnetization reversal efficiently. Recently, spin-orbit-torque (SOT)-induced magnetization switching - where torques brought about by an in-plane current through the spin-orbit interactions are utilized - was demonstrated and intensively studied. In principle, the SOT-induced switching allows for an ultrafast magnetization reversal in a nanosecond timescale. The research group of Tohoku University showed a new scheme of SOT-induced magnetization switching. Whereas there had been two kinds of switching schemes where the magnetization is directed orthogonally to the applied write current, the present structure has the magnetization directing collinear with the current. The group fabricated three-terminal devices with the new structure, where a Ta/CoFeB/MgO-based magnetic tunnel junction is used, and successfully demonstrated the switching operation. The required current density to induce the magnetization switching was reasonably small and the resistance difference between "0" and "1" states was reasonably large, indicating that the new structure is a promising candidate for the MRAM applications. In addition, the group showed that the new structure has the potential to serve as a useful tool to go deeply into the physics of SOT-induced switching, in which a number of unrevealed issues remain. The magnetic memory device can store the information without power supply, allowing a drastic reduction of the power consumption of integrated circuits. In particular, this benefit becomes significant for applications that have relatively long standby times, such as sensor nodes which are likely to perform important roles in future IoT (Internet of Things) societies. In this regard, the present work is expected to pave the way toward the realization of ultralow-power and high-performance integrated circuits and IoT societies.
Related Links Tohoku University Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |