![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Salt Lake City UT (SPX) May 30, 2017
A University of Utah-led team has discovered that a class of "miracle materials" called organic-inorganic hybrid perovskites could be a game changer for future spintronic devices. Spintronics uses the direction of the electron spin - either up or down - to carry information in ones and zeros. A spintronic device can process exponentially more data than traditional electronics that use the ebb and flow of electrical current to generate digital instructions. But physicists have struggled to make spintronic devices a reality. The new study, published online in Nature Physics, is the first to show that organic-inorganic hybrid perovskites are a promising material class for spintronics. The researchers discovered that the perovskites possess two contradictory properties necessary to make spintronic devices work - the electrons' spin can be easily controlled, and can also maintain the spin direction long enough to transport information, a property known as spin lifetime. "It's a device that people always wanted to make, but there are big challenges in finding a material that can be manipulated and, at the same time, have a long spin lifetime," says Sarah Li, assistant professor in the Department of Physics and Astronomy at the U and lead author of the study. "But for this material, it's the property of the material itself that satisfies both."
The miracle material The material's chemical composition is an unlikely candidate for spintronics, however. The hybrid perovskite inorganic frame is made of heavy elements. The heavier the atom, the easier it is to manipulate the electron spin. That's good for spintronics. But other forces also influence the spin. When the atoms are heavy, you assume the spin lifetime is short, explains Li. "Most people in the field would not think that this material has a long spin lifetime. It's surprising to us, too," says Li. "We haven't found out the exact reason yet. But it's likely some intrinsic, magical property of the material itself."
Spintronics: That magnetic moment when... "The silicon technology, based only on the electron charge, is reaching its size-limit," says Li, "The size of the wire is already small. If gets any smaller, it's not going to work in a classical way that you think of." "People were thinking, 'How do we increase the amount of information in such a small area?'" adds Vardeny. "What do we do to overcome this limit?"
"Spintronics," answers physics. By adding spin to traditional electronics, you can process exponentially more information than using them classically based on less or more charge. "With spintronics, not only have you enormously more information, but you're not limited by the size of the transistor. The limit in size will be the size of the magnetic moment that you can detect, which is much smaller than the size of the transistor nowadays," says Vardeny.
The experiment to tune electron spin First, the researchers formed a thin film from the hybrid perovskite methyl-ammonium lead iodine (CH3NH3PbI3) and placed it in front of an ultrafast laser that shoots very short light pulses 80 million times a second. The researchers are the first to use light to set the electron's spin orientation and observe the spin precession in this material. They split the laser into two beams; the first one hit the film to set the electron spin in the desired direction. The second beam bends through a series of mirrors like a pinball machine before hitting the perovskite film at increasing time intervals to measure how long the electron held the spin in the prepared direction. They found that the perovskite has a surprisingly long spin lifetime - up to nanosecond. The spin flips many times during one nanosecond, which means a lot information can be easily stored and manipulated during that time. Once they determined the long spin lifetime, the researchers tested how well they could manipulate the spin with a magnetic field. "The spin is like the compass. The compass spins in this magnetic field perpendicular to that compass, and eventually it will stop spinning," says Li. "Say you set the spin to 'up,' and you call that 'one.' When you expose it to the magnetic field, the spin changes direction. If it rotated 180 degrees, it changes from one to zero. If it rotated 360 degrees, it goes from one to one." They found that they could rotate the spin more than 10 turns by exposing the electron to different strengths of magnetic field. The potential for this material is enormous, says Vardeny. It could process data faster and increase random-access memory. "I'm telling you, it's a miracle material," says Vardeny.
![]() Basel, Switzerland (SPX) May 30, 2017 Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboa ... read more Related Links University of Utah Computer Chip Architecture, Technology and Manufacture Nano Technology News From SpaceMart.com
![]()
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |