Subscribe free to our newsletters via your
. 24/7 Space News .




ENERGY TECH
ASU researchers explore longer life cycle for batteries
by Staff Writers
Tempe AZ (SPX) Mar 13, 2015


Dan Buttry, professor and chair of ASU's Department of Chemistry and Biochemistry, examines a battery sample with graduate student Tylan Watkins. Image courtesy Mary Zhu.

Lithium-ion batteries are common in consumer electronics. They are one of the most popular types of rechargeable batteries for portable electronics, with a high energy density, no memory effect and only a slow loss of charge when not in use. Beyond consumer electronics, lithium-ion batteries have also grown in popularity for military, electric vehicle and aerospace applications.

Now, researchers at Arizona State University are exploring new energy storage technology that could give the battery an even longer life cycle.

Led by Dan Buttry, professor and chair of ASU's Department of Chemistry and Biochemistry, the research also involves former undergraduate researcher Jarred Olsen and current graduate student Tylan Watkins. Olsen joined Buttry's group as an undergraduate researcher to work in the ionic liquids area. The work he contributed to this study was performed while he was on an internship at Boulder Ionics working at both Boulder and ASU with Watkins. Olsen is currently a doctoral student at the University of Washington, Seattle.

The research, just published in Nature Communications, brings together scientists from Arizona State University, University of Colorado at Boulder, Sandia National Laboratories, Boulder Ionics Corporation and Seoul National University, Korea.

Prolonging the life cycle
Room temperature ionic liquids have attracted a great deal of interest in recent years due to their remarkable physicochemical properties, including high thermal stability, wide electrochemical window and low vapor pressure.

"We used a device called a quartz crystal microbalance to measure very tiny mass changes in thin films at the surface of the battery material during charging and discharging," said Buttry. "One of the key features of successful lithium battery materials is that they develop thin films that protect the surface of the battery electrodes, which prolongs the life of the battery. This study documents the development of just such a film in a new type of battery formulation that has many more attractive features than existing commercial lithium batteries."

Buttry added: "The hope is that this new formulation will find its way into commercial use."

The work is part of a larger effort in Buttry's lab that has included funding from the Advanced Research Projects Agency - Energy (ARPA-E) and now from the Army Research Office.

"These were not trivial measurements to make because composite films (meaning a film of the active material in a polymer matrix) are often difficult to use with a quartz crystal microbalance," said Watkins. "Most, if not all, quartz crystal microbalance studies of this sort use very thin films of the active material alone, which means specialty deposition methods must be used. What was cool here is that we were able to make the measurement on a more practical film, something you might realistically see in a commercial battery."

This work provides new science related to the interfacial stability of silicon-based materials while bringing positive exposure to ionic liquid electrochemistry.

By combining a high-performance silicon electrode architecture with a room temperature ionic liquid electrolyte containing the new bis-fluorosulfonylamide anion, the researchers demonstrate a highly energy-dense lithium-ion cell with an impressively long cycling life, maintaining over 75 percent capacity over 500 charge/discharge cycles with almost perfect current efficiency (no wasted electrons).

"This study brings home the fact that energy storage technology still has a lot of room to run, with new technological changes coming at a fast pace," says Buttry. "This is important when considering areas where storage is important, such as grid storage and electric vehicles."

According to Watkins, there are a multitude of reasons why modern society demands more energy dense batteries.

"For some time, silicon anodes have been proposed as replacements for the carbon based anodes found in current state-of-the-art devices as they could potentially give energy densities almost 10 times that of modern anodes," Watkins said. "This exciting collaboration could bring us one step closer to realizing more energy dense batteries with silicon anodes."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Arizona State University
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





ENERGY TECH
Energy-generating cloth could replace batteries in wearable devices
Washington DC (SPX) Mar 06, 2015
From light-up shoes to smart watches, wearable electronics are gaining traction among consumers, but these gadgets' versatility is still held back by the stiff, short-lived batteries that are required. These limitations, however, could soon be overcome. In the journal ACS Nano, scientists report the first durable, flexible cloth that harnesses human motion to generate energy. It can also s ... read more


ENERGY TECH
Core work: Iron vapor gives clues to formation of Earth and moon

Application of laser microprobe technology to Apollo samples refines lunar impact history

NASA releases video of the far side of the Moon

US Issuing Licenses for Mineral Mining on Moon

ENERGY TECH
Use of Rover Arm Expected to Resume in a Few Days

Revolutionary Engine Could Fuel Human Life on Mars

Research Suggests Mars Once Had More Water than Earth's Arctic Ocean

Mars Colonization Edges Closer Thanks to MIT's Oxygen Factory

ENERGY TECH
Orion's Launch Abort System Motor Exceeds Expectations

Cheap yen, fading Fukushima fears lure Japan tourists

Dubai to build 'Museum of the Future'

Old-economy sectors are now tech, too: US study

ENERGY TECH
China at technical preparation stage for Mars, asteroid exploration

China's moon rover Yutu functioning but stationary

Argentina welcomes first Chinese satellite tracking station outside China

More Astronauts for China

ENERGY TECH
US astronauts speed through spacewalk at orbiting lab

Watching Alloys Change from Liquid to Solid Could Lead to Better Metals

NASA Hopes to Continue Cooperation on ISS Until 2024

Russia to use International Space Station till 2024

ENERGY TECH
Soyuz Installed at Baikonur, Expected to Launch Wednesday

Arianespace's Soyuz ready for next dual-satellite Galileo launch

Arianespace certified to ISO 50001 at Guiana Space Center

SpaceX launches two communications satellites

ENERGY TECH
Scientists: Nearby Earth-like planet isn't just 'noise'

Exorings on the Horizon

Planet 'Reared' by Four Parent Stars

Planets Can Alter Each Other's Climates over Eons

ENERGY TECH
German govt okays bill to boost electronic appliance recyling

Google gearing Android for virtual reality: report

Video game makers grapple with need for diversity

Sony virtual reality head gear set for 2016 release




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.