. 24/7 Space News .
EXO WORLDS
ALMA measures size of seeds of planets
by Staff Writers
Tokyo, Japan (SPX) Dec 06, 2016


Dust disk around the young star HD 142527 observed with ALMA. Image courtesy ALMA (ESO/NAOJ/NRAO), Kataoka et al. For a larger version of this image please go here.

Researchers using the Atacama Large Millimeter/submillimeter Array (ALMA), have for the first time, achieved a precise size measurement of small dust particles around a young star through radio-wave polarization. ALMA's high sensitivity for detecting polarized radio waves made possible this important step in tracing the formation of planets around young stars.

Astronomers have believed that planets are formed from gas and dust particles, although the details of the process have been veiled. One of the major enigmas is how dust particles as small as 1 micrometer aggregate to form a rocky planet with a diameter of 10 thousand kilometers. Difficulty in measuring the size of dust particles has prevented astronomers from tracing the process of dust growth.

Akimasa Kataoka, a Humboldt Research Fellow stationed at Heidelberg University and the National Astronomical Observatory of Japan, tackled this problem. He and his collaborators have theoretically predicted that, around a young star radio waves scattered by the dust particles should carry unique polarization features. He also noticed that the intensity of polarized emissions allows us to estimate the size of dust particles far better than other methods.

To test their prediction, the team led by Kataoka observed the young star HD 142527 with ALMA (note 1) and discovered, for the first time, the unique polarization pattern in the dust disk around the star. As predicted, the polarization has a radial direction in most parts of the disk, but at the edge of the disk, the direction is flipped perpendicular to the radial direction.

Comparing the observed intensity of the polarized emissions with the theoretical prediction, they determined that the size of the dust particles is at most 150 micrometers. This is the first estimation of the dust size based on polarization. Surprisingly, this estimated size is more than 10 times smaller than previously thought.

"In the previous studies, astronomers have estimated the size based on radio emissions assuming hypothetical spherical dust particles," explains Kataoka.

"In our study, we observed the scattered radio waves through polarization, which carries independent information from the thermal dust emission. Such a big difference in the estimated size of dust particles implies that the previous assumption might be wrong."

The team's idea to solve this inconsistency is to consider fluffy, complex-shaped dust particles, not simple spherical dust (note 2.). In the macroscopic view, such particles are indeed large, but in the microscopic view, each small part of a large dust particle scatters radio waves and produces unique polarization features.

According to the present study, astronomers obtain these "microscopic" features through polarization observations. This idea might prompt astronomers to reconsider the previous interpretation of observational data.

"The polarization fraction of radio waves from the dust disk around HD 142527 is only a few percent. Thanks to ALMA's high sensitivity, we have detected such a tiny signal to derive information about the size and shape of the dust particles," said Kataoka.

"This is the very first step in the research on dust evolution with polarimetry, and I believe the future progress will be full of excitement."

Research paper


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
National Institutes of Natural Sciences
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
EXO WORLDS
Timing the shadow of a potentially habitable extrasolar planet
Tokyo, Japan (SPX) Nov 29, 2016
A group of researchers from the National Astronomical Observatory of Japan (NAOJ), the University of Tokyo, and the Astrobiology Center among others has observed the transit of a potentially Earth-like extrasolar planet known as K2-3d using the MuSCAT instrument on the Okayama Astrophysical Observatory 188-cm telescope. A transit is a phenomenon in which a planet passes in front of its par ... read more


EXO WORLDS
Space freighter burns up after launch to to ISS: Russia

Cold plasma freshens up French fries

Orbital ATK Ends 2016 with Three Successful Cargo Resupply Missions to ISS

Space Food Bars Will Keep Orion Weight Off and Crew Weight On

EXO WORLDS
Russia seeks answers on ISS cargo ship crash

The Vega launcher is complete for next week's Arianespace mission with Gokturk-1

United Launch Alliance Launches Innovative "RocketBuilder" Website

XCOR Partners With Immortal Data To Enhance And Commercialize Shipslog Data Acquisition System

EXO WORLDS
Swiss firm acquires Mars One private project

Europe okays 1.4 bn euros for Mars rover, ISS

Climate cycles may explain how running water carved Mars' surface features

NASA Radio on Europe's New Mars Orbiter Aces Relay Test

EXO WORLDS
Chinese missile giant seeks 20% of a satellite market

China-made satellites in high demand

Space exploration plans unveiled

China launches 4th data relay satellite

EXO WORLDS
LeoSat and Globalsat Group Sign Strategic Worldwide Agreement

India's Space Program Makes Steady Gains

ESA looks at how to catch a space entrepreneur

Thales and SENER to jointly supply optical payloads for space missions

EXO WORLDS
Creating new physical properties in materials

New technology of ultrahigh density optical storage researched at Kazan University

Earth's 'technosphere' now weighs 30 trillion tons

A watershed moment in understanding how H2O conducts electricity

EXO WORLDS
Life before oxygen

Could There Be Life in Pluto's Ocean?

Biologists watch speciation in a laboratory flask

Timing the shadow of a potentially habitable extrasolar planet

EXO WORLDS
New Perspective on How Pluto's "Icy Heart" Came to Be

New analysis adds to support for a subsurface ocean on Pluto

Pluto follows its cold, cold heart

New Analysis Supports Subsurface Ocean on Pluto









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.