![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Zurich, Switzerland (SPX) Jan 18, 2016
When Thomas Schops wants to create a three-dimensional model of the ETH Zurich main building, he pulls out his tablet computer. As he completes a leisurely walk around the structure, he keeps the device's rear-facing camera pointing at the building's facade. Bit by bit, an impressive 3D model of the edifice appears on the screen. It takes Schops, a doctoral student at the Institute for Visual Computing, just 10 minutes to digitise a historical structure such as the main building. He developed the software running on the device in cooperation with his colleagues from the group led by Marc Pollefeys, Professor of Informatics. Development was carried out as part of Google's Project Tango, in which the internet company is collaborating with 40 universities and companies. ETH Zurich is one of them.
Pixel comparison Or, to put it simply: the software analyses two images of a building's facade that were taken from different positions. For each piece of image information, each pixel in an image, it searches for the corresponding element in the other. From these two points and from the camera's known position and viewing angle, the software can determine how far each picture element is from the device and can use this information to generate a 3D model of the object. Long gone are the days when the models were restricted to the outlines of buildings and basic features such as window openings and doorways. Instead, they now even show architectural details such as the arrangement of bricks in a stone facade. The new software offers some key advantages over existing methods. One advantage is that it can be used in sunlight. "Other systems work using a measuring grid of infra-red light," explains Torsten Sattler, another postdoc in Pollefeys' group who is also participating in the project. In the infra-red method, the device projects a grid of infra-red light onto an object; this grid is invisible to the human eye. An infra-red camera captures the projected image of the grid and uses this to generate a three-dimensional map of the object. "This technique works well indoors," says Sattler. But he goes on to say that it is poorly suited to outdoor shots in sunlight. This is because sunlight also contains infra-red components, which severely interfere with the measurements. "Outdoors, our method has clear advantages. Conversely, infra-red technology is better suited to indoor use in rooms whose structures are less pronounced, such as rooms with uniform, empty walls." The ETH scientists programmed the software for the latest version of the Project Tango mobile device. "These tablets are still in the development phase and are not yet intended for end users, but they have been available for purchase by interested software developers for a few months now, also in Switzerland. The first apps for them have already been developed; however, at the present moment the device is out of stock," says ETH doctoral student Schops.
A fisheye lens and rigorous quality control As the researchers have found, the mapping of large objects is plagued by calculation errors in respect of the 3D coordinates. "It isn't that easy to differentiate between correct and incorrect information," explains Sattler. "We solved the problem by programming the software to scrupulously delete all dubious values." Real-time feedback is essential to ensuring that the 3D model does not become a patchwork. Thanks to a preview mode the user always knows for which building areas they have collected enough information and which still require scanning.
Augmented reality If they view a building 'through' their tablet, additional information about the building can be displayed instantly on the screen. Other potential applications include the modelling of buildings, the 3D mapping of archaeological excavations, and virtual-reality computer games. Furthermore, the technology could be integrated into cars to allow them to automatically detect the edge of the road, for example, or the dimensions of a parking space. Accordingly, the current project has also utilised findings from the EU's V-Charge project for the development of self-parking cars, in which Marc Pollefeys' group was also involved. The software now developed at ETH forms part of Google's Project Tango. "Our software is now part of Google's software database. Of course, we hope that Google will make our technology available to end users and include it as standard in the next version of the Tango tablet," says Sattler. "Obviously, our dream is that some day every mobile device will include this function, allowing the development of apps that utilise it." A large computer manufacturer recently announced its intention to put a smartphone with the Google Tango technology platform on the market this coming summer. Schops T, Sattler T, Hane C, Pollefeys M: 3D Modeling on the Go: Interactive 3D Reconstruction of Large-Scale Scenes on Mobile Devices. Contribution to the International Conference on 3D Vision, Lyons, 19-22 October 2015
Related Links ETH Zurich Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |