![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Brooks Hays Acton, Australia (UPI) Mar 7, 2016
Some scientists believe fusion power -- the energy that powers the stars -- is the future of sustainable energy. Despite periodic breakthroughs, physicists have struggled to replicate the reaction in the lab. New research suggests scientists may have cleared another hurdle en route to synthesizing nuclear fusion. The key, researchers say, is super hot fluid. During fusion experiments, researchers have been frustrated by failing million-degree heating beams, destabilizing their fusion attempts before any energy is generated. A team of scientists at Australian National University believe they solved the problem using fluid dynamics. "There was a strange wave mode which bounced the heating beams out of the experiment," researcher Zhisong Qu said in a news release. "This new way of looking at burning plasma physics allowed us to understand this previously impenetrable problem." Qu is a theoretical physicist at the ANU Research School of Physics and Engineering and lead author of a new paper on fusion in the journal Physical Review Letters. Earthbound scientists have been attempting to replicate stellar fusion using a strategy called magnetic confinement fusion, in which hydrogen is coaxed into plasma form and heated to temperatures ten times those found inside the center of the sun. The problem is these super-heated beams of plasma sometimes behave in unexpected ways. Qu and his colleagues have developed a model that simplifies how scientists explain and predict the behavior of the super-hot liquid hydrogen. The model makes sense of an unstable wave mode observed during the United States' largest fusion experiment, known as DIII-D. The key to the model is that it attempts to explain the plasma's behavior by treating it as a liquid, instead of a collection of individual atoms. "When we looked at the plasma as a fluid we got the same answer, but everything made perfect sense," said Michael Fitzgerald, Qu's research partner and a physicist at the Culham Centre for Fusion Energy in England. "We could start using our intuition again in explaining what we saw, which is very powerful." Researchers believe their new model will ultimately offer a range of insights into the nature of plasma behavior and nuclear fusion. "It will open the door to understanding a whole lot more about fusion plasmas, and contribute to the development of a long term energy solution for the planet," said Matthew Hole, a physics professor at ANU.
Related Links Powering The World in the 21st Century at Energy-Daily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |