. 24/7 Space News .
Curious Skeletons Found In Search For Perfect Cytoskeletons

Cytoskeletons of human endothelial cells glow green in this immunofluorescent micrograph. The filaments meet in triangular structures resembling a geodesic dome -- an example of tensegrity. NASA Science Image
by Karen Miller
for NASA Science News
Hunstville - June 25, 2002
Sculptor Kenneth Snelson's "Needle Tower" is a fragile-looking thing. Criss-crossing rods suspended by taut wires soar perilously upward 20 meters high. Surely it ought to crumble or fall over. Yet it doesn't. When the wind blows, the Needle Tower bends, not breaks. When someone shoves it, it shoves back. The tower is lightweight, strong and curiously beautiful.

Just like the skeletons of cells.

That's right, cells have skeletons. They're not made of calcium like the bones that rattle on Halloween. Cell skeletons--biologists call them cytoskeletons--consist of protein molecules arranged into chains. Cytoskeletons give cells their shape, help cells move, and hold the nucleus in place. Like Snelson's sculptures, cytoskeletons have tensegrity--short for tensional integrity. They balance compression with tension, and yield to forces without breaking. In the Needle Tower, the wires carry tension and the rods bear compression. In a cytoskeleton, protein chains--some thin, some thick and some hollow--take the place of wires and rods. Linked together they form a stable, but flexible, structure.

NASA is interested in cytoskeletons because cytoskeletons respond to gravity. Weight can provide both tension and compression. But what happens (during space travel, for example) when weight vanishes? Do cells behave differently when their cytoskeletons relax?

Harvard cell biologist Don Ingber is a leader among researchers who have been working to find out.

"The cytoskeleton perceives gravity--or any force-- through special proteins known as integrins, which poke through the cell's surface membrane," explains Ingber. Inside the cell, they're hooked to the cytoskeleton. Outside, they latch onto a framework known as the extracellular matrix--a fibrous scaffolding to which cells are anchored in our bodies.

Ingber and his colleagues have shown that when integrins move, the cytoskeleton stiffens. They did it by coating small magnetic beads, about 1 to 10 microns in size, with special molecules that bind to integrins. They attached the beads to the integrins and then applied a magnetic field.

"The beads turned and tried to align with the field, just like a compass needle would want to align with the earth's magnetic field," explains Ingber. The beads twisted the integrins and, in turn, tweaked the cytoskeleton. As more stress was applied, the cytoskeleton became stiffer and stiffer. In fact, it become so stiff that the beads couldn't be turned much past a few degrees!

Tugging on integrins not only caused the cytoskeleton to stiffen, it also activated certain genes. "Activating a gene" means coaxing a gene to generate RNA and proteins. That's important because proteins are little messages that signal the cell to take action. Tickling the cytoskeleton, it seems, can make cells switch between different genetic programs.

Even before the magnetic bead experiment, Ingber's group at Harvard had already discovered a link between cell geometry and cell behavior. In one experiment they forced living cells to take on different shapes--spherical or flattened, square or round--by placing them on tiny adhesive islands of extracellular matrix. Cells that were flat and stretched tended to divide. Cells that were round and cramped tended to die.

Says Ingber: "Mechanical restructuring of the cell and cytoskeleton apparently tells the cell what to do."

Very flat cells with taut cytoskeletons somehow sense that more cells are needed--to cover a cut, for example. Rounder, cramped cells might sense an overpopulation problem and decide it's time to die and make room for others. In either case, they are responding to a control system in which the shape-shifting cytoskeleton serves as a switching mechanism.

The potential implications of this research are vast -- and not limited to space travel. It has already led to a prospective cancer treatment based on changes in cell shape. And it could provide new treatments for osteoporosis, cardiac disease, lung problems and developmental abnormalities. Every tissue in the body, says Ingber, has some disease that results from cells responding abnormally to mechanical forces.

"By pursuing the question of [how cells sense] gravity we've uncovered entirely new aspects of cell regulation."

Ingber believes that tensegrity is a core organizing principle of the entire physical world. Self-stabilizing structures form spontaneously at every scale -- cytoskeletons are merely one example.

Another would be spherical carbon molecules called "BuckyBalls" that look like atomic soccer balls. Clay molecules also arrange themselves into tensegrity patterns that some researchers think harbored the first microscopic life forms on Earth. Even the universe itself, with its black holes (compression) and gravitationally linked galaxies (tension), may be a tensegrity structure.

"I gave a talk once at NASA on evolutionary biology," he recalls. "The last slide of my talk was a picture of the universe: super clusters of galaxies. Next to it was a one of capillary cells in a dish, formed into networks. The two pictures looked identical."

Related Links
More Pixs and Links
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Brain-Imaging Cap Under Study For Space And Earth Use
Houston - May 8, 2002
A lightweight, imaging cap being designed to assess brain function may go where no MRI has gone before.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.