![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]()
Whilst experimenting with nanospheres and perfluorodecalin, a liquid used in the production of synthetic blood, researchers at Germany's University of Ulm have stumbled across a phenomenon that could ultimately help remove ozone-harming chemicals from the atmosphere. The perfluorodecalin, against all expectations, was taken up by a water-based suspension of 60 nm diameter polystyrene particles. The scientists believe that this occurred because nanoscopic perfluorodecalin droplets became encapsulated by self-assembled polystyrene nanospheres. Perfluorodecalin has very similar properties to chlorofluorocarbons (CFCs), the inert liquids that are known to destroy the Earth's protective ozone layer. Moreover, the Ulm team reckons that aerosol particle-carrying water droplets or ice crystals in clouds may be able to collect up chlorofluorocarbons in the same way, eventually returning them harmlessly to Earth as rain, hail or snow. "I realized that I had developed a useful model system for the simulation of microphysical processes in the stratosphere," Andrei Sommer of the University of Ulm told nanotechweb.org . "In particular, for [simulating] the very complicated interplay between cloud droplets, nanoscopic aerosols emitted by man-made and natural sources, and chlorofluorocarbons -- the principal ozone killers." The solid aerosols that arise from urban and industrial sources, for example petrol and diesel particles, are roughly the same size as the polystyrene nanospheres used in this experiment. "Nanoscale aerosols -- which are also accused of suppressing rain and reducing the amount of sun reaching the Earth's surface -- could in fact be helpful in reducing the stratospheric concentrations of ozone killers," added Sommer. Sommer says that if tests confirm the predictions from the simple model system, the result could be a practical strategy to stop, or possibly even repair, one of the two potentially most destructive global problems caused by mankind. He reckons scientists could use space technology to carry large amounts of specially designed non-toxic nanoscale particles into the heart of the ozone hole. In the short term, Sommer says it's worth optimizing the properties of such nanoscale particles -- for example, aerosol size, chemical composition and solubility -- while reducing the cost. Then it's a case of encouraging international space agencies to begin airborne experiments. Back on Earth, meanwhile, the perfluorodecalin-based nanosphere suspension research could also have applications in nanopatterning and biofunctionalization techniques for biomaterials. Related Links Full Story At Nano Tech Web The Institute of Physics SpaceDaily Search SpaceDaily Subscribe To SpaceDaily Express ![]() ![]() NASA researchers, and more than 350 scientists from the United States, European Union, Canada, Iceland, Japan, Norway, Poland, Russia and Switzerland, are working together this winter to measure ozone and other atmospheric gases. The scientists will use aircraft, large and small balloons, ground-based instruments and satellites.
|
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |