. 24/7 Space News .
Low-Voltage MEMs Switch Developed For High-Speed Electronics

illustration only: a drive chain a MEMS replicated a MEMS device
Champaign - Apr 18, 2002
Microelectronics researchers at the University of Illinois have developed a low-loss, wide-bandwidth microelectromechanical systems (MEMS) switch that can be integrated with existing technologies for high-speed electronics.

The new low-voltage switch could be used in switching networks for phased-array radars, multibeam satellite communications systems and wireless applications.

"The switch has a tiny metal pad that can move up or down in less than 25 microseconds," said Milton Feng, the Holonyak Professor of Electrical and Computer Engineering at the UI. "This simple configuration provides a very low insertion loss of less than 0.1 dB, and the metal-to-metal contact has the inherently wide band response of a larger, more typical mechanical switch."

The switches are fabricated in the UI's Micro and Nanotechnology Laboratory using standard MEMS processing techniques. To create the unique metal pull-down pad, Feng and graduate students David Becher, Richard Chan and Shyh-Chiang Shen first deposit a thin layer of gold on a sacrificial layer of photosensitive material.

Then they dissolve the substrate, pick up the pad and place it in position on the switch. The metal pad � about 150 microns wide and 200 microns long � is supported at the four corners by serpentine cantilevers, which allow mechanical movement up and down.

"When in the �up' position, the metal pad forms a bridge that spans a segment of the coplanar waveguide and allows the signal to pass through," Feng said. "But an applied voltage will pull the pad down into contact with the signal line, creating a short circuit that blocks the signal transmission."

The gap between the metal pull-down pad and the bottom electrode is about 3 microns wide, which provides an isolation of greater than 22 dB for signal frequencies up to 40 GHz. Currently, an activation voltage of 15 volts is required to operate the switch.

One major problem Feng and his students had to overcome was stiction � a tendency for the metal pad to stick to a dielectric layer beneath the bottom electrode as a result of accumulated electrostatic charge.

To prevent the charge from building up, the researchers added a tiny post that limits the downward motion of the pad. "This hard stop prevents the pad from moving past the bottom electrode and contacting the dielectric," Feng said.

In reliability tests, the switches have demonstrated lifetimes in excess of 780 million switching cycles. To further enhance the reliability, the researchers are attempting to lower the actuation voltage to less than 10 volts.

"For any device to be used in a practical application it must be reliable," Feng said. "Our results show that good reliability is possible with low voltage operation."

Becher will describe the MEMS switch at the 2002 GaAs MANTECH International Conference on Compound Semiconductor Manufacturing Technology, to be held April 8-11 in San Diego.

The Defense Advanced Research Projects Agency funded the work.

Related Links
University of Illinois at Urbana-Champaign
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Putting Individual Photons To Work
Los Angeles - Mar 29, 2002
UC chemist William Connick has found a way to get a single particle of light - one photon - to do twice the expected amount of work.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.