. | . |
Hidden Order Found In Cuprates May Help Explain Superconductivity
Like the delicate form of an icicle defying gravity during a spring thaw, patterns emerge in nature when forces compete. Scientists at the University of Illinois at Urbana-Champaign have found a hidden pattern in cuprate (copper-containing) superconductors that may help explain high-temperature superconductivity. Superconductivity, the complete loss of electrical resistance in some materials, occurs at temperatures near absolute zero. First observed in 1911 by Dutch physicist Heike Kamerlingh Onnes, the mechanism of superconductivity remained unexplained until 1957, when Illinois physicists John Bardeen, Leon Cooper, and J. Robert Schrieffer determined that electrons, normally repulsive, could form pairs and move in concert in superconducting materials below a certain critical temperature. For more than a decade, scientists have been baffled by superconductivity in the copper oxides, which occurs at liquid-nitrogen temperatures and does not seem to behave according to standard BCS theory. A tantalizing goal, which would have enormous implications for electronics and power distribution, is to achieve superconductivity at room temperature. A large piece of the puzzle has been to understand how the coherent dance of electrons that gives rise to superconductivity changes when the material is heated. In a paper to appear in the journal Science, as part of the Science Express Web site, on Feb. 12, researchers at Illinois show that when heated, the orderly superconducting dance of electrons is replaced, not by randomness as might be assumed, but by a distinct type of movement in which electrons organize into a checkerboard pattern. The experimental findings imply that the two types of electron organization, coherent motion and spatial organization, are in competition in the copper oxides -- an idea that may break the logjam on the mystery of high-temperature superconductivity. "Heating a normal superconductor above its critical temperature results in a normal metallic behavior, but heating a high-temperature superconductor above its critical temperature results in a non-metallic state of electrons called the pseudogap state," said physics professor Ali Yazdani, a Willett Faculty Scholar at Illinois and senior author of the paper. "We have examined for the first time the motion of electrons in this mysterious pseudogap state on the nanometer scale." Yazdani and graduate students Michael Vershinin and Shashank Misra used a scanning tunneling microscope to map electron waves in cuprate superconductors at high temperatures. "Comparing maps of electron waves in both the superconducting and the pseudogap state, we have found that electrons in the pseudogap state organize into a checkerboard pattern," Yazdani said. "This pattern appears to be the result of competing forces felt by the electrons, such as Coulomb repulsion because of their charge and magnetic interactions resulting from their spins." Regardless of the specific cause of the local ordering, "our experimental observations provide new constraints on the potential theoretical description of the pseudogap state in the cuprates and how it transforms into superconductivity when we cool the cuprate samples," Yazdani said. Pattern formation of electron waves in high-temperature copper-oxide superconductors has long been anticipated theoretically, and Illinois physics professor Eduardo Fradkin contributed to the theoretical work. However, the experimental discovery of such pattern formation was made possible by a new generation of STM designed by Yazdani's group to operate at temperatures above the superconducting transition temperature. Related Links University of Illinois at Urbana-Champaign SpaceDaily Search SpaceDaily Subscribe To SpaceDaily Express Laser To Cut Through The Costs Of High Volume Metal Working Brussels - Feb 11, 2004 Cutting high-thickness metal sheets is a basic manufacturing process common to a wide range of industrial sectors, from heavy carpentry to ship-building. Laser-cutting technology ought, in theory, to have significant advantages over traditional cutting processes, among them high cutting speed, no tool wear and a reduction in the transfer of energy to the piece of metal being cut.
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |