![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]()
for Astrobiology Magazine Moffett Field - Mar 03, 2004 NASA's Opportunity rover has found convincing evidence that large quantities of water were once present in at least one location on Mars. "The rocks here were once soaked in liquid water," said Steve Squyres, principle investigator for the Mars Exploration Rover (MER) mission, referring to the bedrock outcrop near the rover's landing site in Meridiani Planum. Evidence suggests that, at some point in Mars's past, water was present in sufficient quantity to make the region "capable of supporting life as we know it." Confirmation of water's role came from a series of detailed measurements made over the past few days at El Capitan, a small section of the rock outcrop. Both microscopic images and spectral measurements, which can reveal specific chemicals and minerals, helped to convince scientists of water's historical role. Squyres did, however, offer a caveat. While the outcrop was "definitively" altered by water percolating through it, he said, scientists are still not certain whether water played a role in its initial formation.
Small spherules embedded in the outcrop provided one early clue that water had transformed the rock. On Earth, similar spherules are known to precipitate out of water. (The science team has nicknamed the spherules "blueberries" because they are distributed throughout the rock matrix, the bulk of the rock, like blueberries in a muffin.) A second clue was sulfur detected on rock surfaces. The presence of sulfate minerals in a rock is often an indicator that rocks have been altered by water. Layering visible in the rock matrix suggested that water also might have been involved in the outcrop's initial formation.
New Data Microscopic images revealed that the rock's layers were not deformed in any way by the presence of the spherules. This, along with other visual evidence, said Squyres, led the science team to the conclusion that the spherules were concretions. "Concretions form when there's liquid water in a rock. [The water has stuff dissolved in it [that] begins to precipitate out. And as it does so, it grows around a nucleation point to make a small spherical object." If the spherules had not been concretions, the rock layers above and below them would have appeared deformed. Microscopic images provided other visual evidence of water alteration, as well. Throughout the rock were small holes, or "vugs," about the size and shape of pennies. The distribution pattern of the vugs was a familiar sight to geologists. Similar formations are common on Earth. They occur when percolating water first deposits small crystals - of gypsum, for example - within pores in the rock, and some time later, after environmental conditions have changed, erodes or dissolves them away.
Sulfur: The Slam Dunk "Too much to explain by any other mechanism than this rock being full of sulfate salts. That's a telltale sign of liquid water." "We interpret this sulfur to be really the compound sulfate," said Ben Clark, a MER science team member. "And the salt that we think is probably most prevalent is magnesium sulfate." Magnesium sulfate can be found at your local drug store: it's what Epsom salt is made of. The mineral present on Mars is most likely kieserite, a dehydrated form of the compound. Opportunity's M�ssbauer spectrometer confirmed the presence of sulfates when it detected the mineral jarosite. Jarosite is an iron sulfate hydrate; it forms through the interaction of iron, sulfur and water. "Because it's a sulfate hydrate," Squyres said, "you've got to have water around to make it." Although it is rare on Earth, some scientists had predicted that it might be found on Mars.
Unanswered Questions But finding evidence of aqueous alteration doesn't necessarily imply that the martian surface was ever warmer and wetter than it is today, or that liquid water was ever present on the martian surface. Liquid water could have percolated through the rock, underground, even if Mars's surface was frozen and its atmosphere too thin for liquid water to be stable above ground. Nor do these findings reveal anything about how long ago the alterations took place, or over what period of time. Answering those questions, Squyres said, will probably require bringing martian rock samples back to Earth, where they can be studied with more sophisticated laboratory instruments than it is currently feasible to send to Mars.
Opportunity image gallery and slideshow In support of this argument, Clark points out that the total salt concentration in some portions of El Capitan, "may be as high as 40 percent. The only way you can form such large concentrations of salt on Earth normally is to dissolve it in water and have the water evaporate." Chlorine and bromine detected in El Capitan also support the idea that the outcrop formed through evaporation. Two distinct geologic units are visible within El Capitan. The two units initially were distinguished by differences in their appearances. Recent data reveal that they differ in composition as well. Sulfur is present in its highest concentration in the upper unit, in a rock named Guadalupe. The highest concentration of bromine and chlorine, on the other hand, occurs in McKittrick, which is in the lower unit. "This is what scientists call an 'evaporitic sequence,'" said Clark. "It happens whenever you have a salt-rich briny material" that precipitates out as water evaporates. "Each different type of salt will precipitate at a different time and a different level." But there are also problems with this idea. One such problem, said Squyres, is that "it's difficult at this site to point to a well-defined basin that the water may have been confined in." But, he added, the topography of the region may have changed significantly since the time when the outcrop formed. So "I don't think the absence [of a visible basin] argues compellingly against these rocks having been laid down in liquid water. But I think all of us would agree that the jury's still out."
Next Steps John Grotzinger, another MER science team member, is hopeful that Opportunity will resolve this debate in the coming week, when the rover moves on to Last Chance, a rock near the right end of the outcrop. In Pancam images, different layers within Last Chance appear to lie at different angles. This is known as cross bedding. Cross bedding typically occurs in sediments deposited in water, a result of the water washing back and forth across the lake or sea bed, but it can also occur in sediments tossed about by wind or volcanic gases. By examining Last Chance's cross beds in microscopic detail, Grotzinger says, scientists should be able to distinguish among these alternatives. After studying Last Chance, Opportunity will roll to the left edge of the outcrop to try to learn more about the composition of the spherules. There is a small depression in the rock there that has been given the moniker Blueberry Bowl because it is filled with the tiny spheres. That will complete the first phase of Opportunity's mission.
Hematite, at Last "We're just getting started," said Squyres. "This is the rock that we first saw when we opened our eyes, and it's just 8, 9 or 10 meters (roughly 30 feet) from where we landed. And there may be much better stuff out there. So at the same time we're enjoying working over every centimeter of this outcrop, we're also chomping at the bit to get out of this place and find some new stuff." But even if Opportunity doesn't learn anything more about Mars than it already has, it will go down in the record books as having achieved a scientific first: the discovery of definitive evidence for liquid water on another world. Article is courtesy of NASA's Astrobiology Magazine team at Ames Research Center. This article is public domain and available for reprint with appropriate credit.
Related Links ![]() Just past the halfway point of its three-month prime mission, NASA's Mars Exploration Rover Spirit has achieved several scientific firsts, but may still have its best "Eureka!" Moments in front of it.
|
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |