. 24/7 Space News .
Aerosols Cool The Earth But Warm The Atmosphere

In the image shown top Clouds with low aerosol concentration and a few large droplets do not scatter light well, and allow much of the Sun's light to pass through and reach the surface.

Whereas in the lower image the high aerosol concentrations in these clouds provide the nucleation points necessary for the formation of many small liquid water droplets. Up to 90% of visible radiation (light) is reflected back to space by such clouds without reaching Earth's surface.

Greenbelt - August 13, 2001
New research based upon NASA satellite data and a multi-national field experiment shows that black carbon aerosol pollution produced by humans can impact global climate as well as seasonal cycles of rainfall.

Because aerosols that contain black carbon both absorb and reflect incoming sunlight, these particles can exert a regional cooling influence on Earth's surface that is about 3 times greater than the warming effect of greenhouse gases.

But even as these aerosols reduce by as much as 10 percent the amount of sunlight reaching the surface, they increase the solar energy absorbed in the atmosphere by 50 percent -- thus making it possible to both cool the surface and warm the atmosphere. Scientists are concerned that this heating may perturb atmospheric circulation and rainfall patterns.

"When we combined the satellite measurements with surface measurements, we found that the reduction of sunlight reaching the surface was three times larger than the amount of sunlight reflected back to space," says Veerabhadran Ramanathan, director of the Center for Clouds, Chemistry, and Climate at Scripps Institution of Oceanography at the University of California, San Diego.

"Averaged over the entire northern Indian Ocean, the man-made pollutants reflected more solar radiation back to space (than pristine skies), but they absorbed up to twice as much radiation in the atmosphere."

Together with K. Rajeev, of India's Vikram Sarabhai Space Centre, the authors report their findings in the August 16 Journal of Geophysical Research. Data for their investigation were collected during the Indian Ocean Experiment (INDOEX) -- an international, multi-agency measurement campaign conducted from January through March in the years 1997, 1998, and 1999.

INDOEX used instruments on land and on aircraft together with measurements made by NASA's Clouds and Earth's Radiant Energy System (CERES) sensor as it flew overhead aboard the Tropical Rainfall Measuring Mission (TRMM) satellite.

The experiment's objective was to help scientists understand to what extent human-produced aerosols may offset global warming. Earlier global warming studies suggest aerosols make our world "brighter" by reflecting more sunlight back to space, thereby helping to counteract the greenhouse effect.

The Indian subcontinent offered the architects of the INDOEX campaign an ideal setting for their field experiment. The region was chosen for its unique combination of meteorology, landscape (relatively flat plains framed by the towering Himalayan Mountains to the north and open ocean to the south), and the large Southern Asian population (roughly 1.5 billion) with a growing economy.

"Together, these features maximize the effects of aerosol pollution," Ramanathan explains. As a result of human industry -- automobiles, factories, and burning vegetation -- particles build up in the atmosphere where they are blown southward over most of the tropical Indian Ocean. The Indo-Asian haze covered an area larger than that of the United States.

Although the INDOEX team found atmospheric particles of natural origin -- such as trace amounts of sea salts and desert dust -- they also found that 75 percent of the aerosol over the region resulted from human activities -- including sulfates, nitrates, black carbon, and fly ash.

Most natural aerosols scatter and reflect sunlight back to space, thereby making our planet brighter. However, human-produced black carbon aerosol absorbs more light than it reflects, thereby making our planet darker.

"Ultimately, we want to determine if our planet as a whole is getting brighter or darker," Ramanathan states. "We could not answer that question until we could measure the sunlight reflected at the top of the atmosphere with an absolute accuracy of 1 percent. The CERES sensors provide that accuracy for the first time ever from a space-based sensor."

CERES was first launched in 1997 aboard TRMM, which flies in a near- equatorial orbit. Two more CERES sensors were launched in December 1999 aboard NASA's Terra satellite, which flies in a near-polar orbit. Terra's polar orbit allows CERES to measure the Earth's incoming and outgoing radiant energy on a global scale every day.

Moreover, the Moderate- resolution Imaging Spectroradiometer (MODIS) aboard Terra makes precise global measurements of aerosols that greatly enhance scientists' ability to study their effects.

"A large reduction of sunlight at the surface has implications for the hydrological cycle because of the close tie between heat and evaporation," Ramanathan says. "It could change the heating structure of the atmosphere and perturb the climate system in ways we don't understand now. We don't know, for example, how this might affect the monsoon season."

While Ramanathan admits that scientists don't know the net effect of bright and dark aerosols on global climate, through INDOEX and CERES they have shown that aerosols have a net cooling effect on the surface and they now know the magnitude of that cooling over a large region.

But Ramanathan believes that the INDOEX campaign does not solve the greater mystery. The next step is to use the CERES and MODIS sensors aboard NASA's Terra satellite to extend this study to the global scale.

Related Links
Scripps Institution of Oceanography
Understanding Aerosols
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Climate Change In Atlantic Larger Than Previously Thought
Greenbelt - July 23, 2001
A NASA satellite confirms that overturning in the North Atlantic Ocean -- a process where surface water sinks and deep water rises due to varying water densities -- speeds up and slows down by 20 to 30 percent over 12 to 14 year cycles. Scientists previously believed that a change of this magnitude would take hundreds of years, rather than close to a decade.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.