. 24/7 Space News .
Left-Handed Metamaterials Hold Promise Of Cheaper Mobile Phones And GPS, With Enhanced Performance

Photonic crystals are usually viewed as an optical analog of semiconductors that modify the properties of light similarly to a microscopic atomic lattice that creates a semiconductor band-gap for electrons. It is therefore believed that by replacing relatively slow electrons with photons as the carriers of information, the speed and band-width of advanced communication systems will be dramatically increased, thus revolutionizing the telecommunication industry.
Pamplona, Spain (SPX) Nov 30, 2005
In his PhD thesis the Pamplona engineer Francisco Falcone Lanas, has put forward various structures, based on what are known as left-handed metamaterials, that can be used to make more highly performing, smaller mobile phones, aerials or GPS devices.

Photonic crystal devices

The research undertaken by Francisco Falcone in his PhD involved analysing the application of metamaterial structures in conventional high-frequency planar technology.

For his thesis Francisco Falcone analysed two types of structure. One with photonic crystals which have good control of the signal but are not greatly efficient with respect to size. These are known as Electromagnetic Bandgap (EBG) structures.

Taking these as a basis, Francisco Falcone put forward a number of microstrip technology devices, etching a periodic pattern on their planar surfaces. This is the most significant difference in these proposed, smaller and more compact unidimensional structures, compared to the previous, bidimensional ones. Moreover, they have experimented with the introduction of a resonator in planar technology.

First worldwide

It is, nevertheless, it is with the second type of structure where the results of the research team at the Public University of Navarre are more spectacular. What are known as left-handed metamaterials involve materials which have curious electromagnetic properties and which are not found naturally, i.e. they are artificially generated media.

In this part of the research Francisco Falcone synthesised left-handed materials in planar technology by using Split Ring Resonators (SRR) together with a medium of fine metallic wires. In this respect we can say that we have achieved the very first implementation worldwide of a low loss LHM metamaterial. An evolution of this device was the use of a new particle therein - which we call complementary SSR - in which the role of paper and metal is interchanged.

In this way and applying classical metamaterial concepts, we obtained devices with extremely low losses. Our proposal was based on the introduction of particles in planar technology, i.e. their integration into the circuit. In fact, we have managed to obtain the devices with the lowest losses ever obtained worldwide. We were the first to propose this phenomenon and the discovery received recognition on being published in the prestigious scientific magazine, Physical Review Letters.

The advantage of its use is that it enables the making of a series of circuits that otherwise would be impossible and, moreover, these give quite an optimal response in that they have few and very low losses.

This PhD puts forward the potential use of these kinds of structures for devices such as filters, couplings and aerials for 2nd, 3rd and 4th generations mobile communications systems such as satellite systems and WLAN. But, above all, they are low cost structures and very easy to manufacture.

Related Links
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express

Blue Sky Network Launches ACH1000 Global Satellite Flight Tracking Product
La Jolla CA (SPX) Nov 29, 2005
Blue Sky Network Monday announced a new satellite based panel mounted control head for aircraft. The ACH1000 adds cockpit integrated voice capabilities as well as short code messaging to its D1000-Series global satellite flight tracking products. The ACH1000 has been STC'd by the FAA.



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only














The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.