![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]()
Phoning home from 93 billion miles away - -only E.T. and other science fiction characters can do that. But with the help of National Institute of Standards and Technology (NIST) know-how, reality soon may catch up with imagination. Conceptual designs for a "realistic interstellar explorer," or RISE - a highly autonomous craft that would travel far beyond this solar system to collect scientific data - call for a laser-based communications link to Earth that relies in part on a recent NIST invention called a Parallel Cantilever Bi-axial Micro-Positioner. The prototype NIST device acts as a mechanical filter that generates very straight lines by screening out all other motions. Primarily intended for use in the delicate assembly and alignment of optoelectronic devices and applications in micro- and nano-manufacturing, the micro-positioner in a different application offers a promising means for meeting the demanding range, mass and power requirements for the RISE. In its interstellar role, the micro-positioner would be used to position a lens that steers a laser beam communication link toward Earth. The beam must be pointed precisely because the distances would be, well, astronomical. The RISE is envisioned as having a range up to 1,000 Astronomical Units (AU) - 1,000 times the distance from the Earth to the sun, or 93 billion miles. A recent paper by researchers at NIST and Johns Hopkins University Applied Physics Laboratory (which is designing the RISE) concluded that an optical communications downlink spanning 1,000 AU is technically feasible in the next decade if these new technologies can be sufficiently refined. For example, the current range of the NIST micro-positioner would have to be improved by a factor of nearly 10.
NIST Helping Prepare An 'out Of This World' Atomic Clock PARCS will be used to test gravitational theory, study laser-cooled atoms in microgravity and explore ways to improve the accuracy of timekeeping on Earth. Atoms in microgravity can be slowed to speeds significantly below those used in atomic clocks on Earth, providing a predicted 10-fold improvement in clock accuracy. (The current U.S. standard, the NIST-F1 clock, is accurate to within one second in 30 million years.) The PARCS space clock will be compared continuously to the hydrogen maser, a fundmentally different clock, to provide a test of an Einstein theory that predicts that two different kinds of clocks in the same environment will keep the same time. To measure gravitational frequency shift, comparisons will be made between the space clock and a clock on Earth. Signals conveyed to the ground from such space clocks someday might serve as an international time standard available to anyone around the world. PARCS is a cooperative effort involving NASA's Jet Propulsion Laboratory (JPL), NIST, Harvard-Smithsonian Center for Astrophysics, the University of Colorado at Boulder, and the University of Torino in Italy. JPL is leading the actual development of the space package. Related Links National Institute of Standards and Technology SpaceDaily Search SpaceDaily Subscribe To SpaceDaily Express ![]() ![]() To get around, satellites sailing through space use the same tools that ancient mariners used to navigate the inhospitable oceans -- the stars. However, soon, instead of sending back details of their position to experts here on Earth, spacecraft will be able to calculate and adjust their course all by themselves. ESA now has special software that it will test on its SMART-1 mission, due for launch in Spring 2003.
|
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |