![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Berm, Switzerland (SPX) Sep 27, 2019
Astronomers detected a giant planet orbiting a small star. The planet has much more mass than theoretical models predict. While this surprising discovery was made by a Spanish-German team at an observatory in southern Spain, researchers at the University of Bern studied how the mysterious exoplanet might have formed. The red dwarf GJ 3512 is located 30 light-years from us. Although the star is only about a tenth of the mass of the Sun, it possesses a giant planet - an unexpected observation. "Around such stars there should only be planets the size of the Earth or somewhat more massive super-Earths," says Christoph Mordasini, professor at the University of Bern and member of the National Centre of Competence in Research (NCCR) PlanetS: "GJ 3512b, however, is a giant planet with a mass about half as big as the one of Jupiter, and thus at least one order of magnitude more massive than the planets predicted by theoretical models for such small stars." The mysterious planet was detected by a Spanish-German research consortium called CARMENES, which has set itself the goal of discovering planets around the smallest stars. For this purpose, the consortium built a new instrument, which was installed at the Calar Alto Observatory at 2100 meters altitude in southern Spain. Observations with this infrared spectrograph showed that the small star regularly moved towards and away from us - a phenomenon triggered by a companion who had to be particularly massive in this case. Because this discovery was so unexpected, the consortium contacted, among others, the Bern research group of Mordasini, one of the world's leading experts in the theory of planet formation, to discuss plausible formation scenarios for the giant exoplanet. The paper with all contributions has now been published in the journal Science.
Bottom-Up Process or Collapse? One possible explanation for the failure of current theory could be the mechanism underlying the model, known as core accretion. Planets are formed by the gradual growth of small bodies into ever larger masses. The experts call this a "bottom-up process." Maybe the giant planet GJ 3512b was formed by a fundamentally different mechanism, a so-called gravitational collapse. "A part of the gas disk in which the planets are formed collapses directly under its own gravitational force," explains Mordasini: "A top-down process." But even this explanation poses problems. "Why hasn't the planet continued to grow and migrate closer to the star in this case? You would expect both if the gas disk had enough mass to become unstable under its gravity," says the expert and adds: "The planet GJ 3512b is therefore an important discovery that should improve our understanding of how planets form around such stars."
Research Report: "A Giant Exoplanet Orbiting a Very Low-Mass Star Challenges Planet Formation Models"
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |